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Abstract

In the presented lecture-course we attempt to make a brief introduction to the kinetic theory of

non-equilibrium processes and link these processes with microscopic description of the gas-type or

condensed (liquid-type) media. The well-know equations of hydrodynamics responsible for matter

and energy transfer, such as Navier-Stokes, thermal conductivity, diffusion etc., will be rigourously

constructed via kinetic approach fundamentally based on the Boltzmann kinetic equation. The

lecture course requires elementary knowledge of probability theory, classical mechanics and concept

of partial differential equations in mathematical physics.
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I. BOLTZMANN KINETIC EQUATION

A. Statistical distribution in the phase space. Probability density function

For macroscopic system, such as dense non-ideal gas or liquid, consisting of many particles

the random distribution of its molecules (or atoms) can be described by the probability

density function

f(x, y, z; px, py, pz; t) ≡ f(r,p, t) (1.1)

which has a meaning that the product

f(x, y, z; px, py, pz; t) dxdydz dpxdpydpz = f(r,p, t) d3rd3p (1.2)

gives a number of molecules which spatial positions r and linear momenta p are respectively

located inside the domains (x, x + dx), (y, y + dy), (z, z + dz) and (px, px + dpx), (py, py +

dpy), (pz, pz + dpz). Both the coordinates r and p = mv (where m is the molecule mass)

considered together define a point in so called phase space of microscopic states of the

molecule. The probability density function is normalized as follows∫
f(r,p, t) d3rd3p = N (1.3)

where N is the total number of molecules. For macroscopic system this number is normally

huge and as a consequence it lets us select the differential volume element in the phase space

dγ ≡ d3rd3p to be mesoscopicaly small but still containing a large number of molecules

dn = f dγ ≫ 1.

Once we know the statistical distribution in the phase space we can find any macroscopic

parameters of the medium. For example the spatial density distribution n(r, t) is given by

n(r, t) =

∫
f(r,p, t) d3p (1.4)

Other parameters can be similarly defined, but the tricky point is that the complicate internal

dynamics of the medium allows us to introduce the closed equation only for probability

density function and not for macroscopic parameters of the medium.

To derive such a basic equation let us start from a natural physical assumption that for

macroscopic system the increment

f(r,p, t+ dt)− f(r,p, t) =
∂f

∂t
dt (1.5)
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could be small [i. e. function f itself is slow-varied] during the interval dt when a significant

number of molecules either entered or exited the volume dγ as result of free motion or

collision dynamics. Later on we will discuss the validity of this assumption.

At the first step we ignore collisions of the molecules and follow how f -function is changed

due to free drifting of the particle through the volume dγ. Consider the box in normal

position coordinate space together with the similar box in the momentum subspace as shown

in the figure below and count the number of particles entering and exiting both the boxes

during the time increment dt. The disbalance between the particles entering and exiting the

FIG. 1: An elementary volume of the phase space d3rd3p = dxdydz dpxdpydpz constructed near

the point of the molecule microscopic state (r,p) = (x, y, z; px, py, pz).

left-hand box in x-direction during the time dt is given by

f(x, y, z;p; t)vxdt dydz d
3p− f(x+ dx, y, z;p; t)vxdt dydz d

3p

= −∂f

∂x
dx vxdt dydz d

3p = −vx
∂f

∂x
d3rd3p dt (1.6)

where vx = px/m is the molecule velosity projected onto x-direction and m is the molecule

mass. Similarly for the right-hand box with counting the particle disbalnce in px-direction

we have

f(r; px, py, pz; t) d
3r ṗxdt dpydpz − f(r; px + dpx, py, pz; t) d

3r ṗxdt dpydpz

= − ∂f

∂px
dpx d

3rṗxdt dpydpz = −Fx
∂f

∂px
d3rd3p dt (1.7)

where in accordance with the second Newton’s law ṗx = Fx where Fx is external force

acting on the particle. With taking into account all the three directions in coordinate and
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momentum subspaces (i.e. all six coordinates in the entire phase space) we obtain the

following disbalance for the number of particles in an elementary cell of the phase space

− p

m

∂f

∂r
d3rd3p dt− F

∂f

∂p
d3rd3p dt (1.8)

But this is not complete contribution mediating the kinetic process as far as the molecules

can enter or exit the momentum box shown in Fig 1 because of internal dynamics i.e. via

collision process.

Each molecule located in the right-hand box can sharply change its momentum because

of collision. The collision itself has negligible duration τc in comparison with increment dt

such that τc ≪ dt. Thus for the rather dense gas we can expect a significant number of such

events depleting the number of molecules in an elementary cell of the phase space

− b d3rd3p dt (1.9)

The depletion is compensated by alternative gain process when the molecules income in the

momentum volume of the phase space once one of the collision partners gets a kick of a

linear momentum approximately equal to p

a d3rd3p dt (1.10)

Both the coefficients a (in-scattering term) and b (out-scattering term) are the subjects of

calculation with precise tracking of the collision dynamics, which we do in the next sections.

The entire balance for the particles in the elementary volume reads

∂f

∂t
d3rd3p dt = − p

m

∂f

∂r
d3rd3p dt− F

∂f

∂p
d3rd3p dt+ (a− b) d3rd3p dt (1.11)

Canceling the phase volume dγ = d3rd3p and the time increment dt we obtain

∂f

∂t
=

(
∂f

∂t

)
drift

+

(
∂f

∂t

)
col

(1.12)

where the drift and collision terms are respectively given by(
∂f

∂t

)
drift

= − p

m

∂f

∂r
− F

∂f

∂p
(1.13)

and (
∂f

∂t

)
col

= a− b (1.14)
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The balance relations (1.11) and (1.12) give us a precursor of the master equation mediating

the entire dynamics of the density probability function.

We conclude this section by the following important remark. We can point out that

incorporation of the drift term in the left-hand side of Eq. (1.2) leads

∂f

∂t
−

(
∂f

∂t

)
drift

=
∂f

∂t
+

p

m

∂f

∂r
+ F

∂f

∂p
=

(
Df

Dt

)
(1.15)

and can be associated with complete time derivative if the molecular ensemble freely evolves

and is only affected by external forces such that the probability density function is consid-

ered as composition function on time f = f(r,p, t) = f(r(t),p(t), t). The fact that the

probability density reveals an integral of motion for an ideal gas is expectable consequence

of our discussion. Such a reduced equation would be time reversible and obey the Newton

dynamics with saving entropy of the system. This observation emphasizes the physical dif-

ference between dynamical and kinetic description where the collision process induces an

internal stochastic disturbance into the ideal dynamics and eventually makes the kinetic

process irreversible in time.

B. The scattering cross-section

In this section we consider the basic parameter of the collision process namely the scattering

cross-section. We follow the concept of classical mechanics and readdress the listeners to the

textbooks in classical mechanics [L.D. Landau & E.M. Lifshitz ”Mechanics”; H. Goldstein

”Classical Mechanics”] for more details. To begin it is convenient to consider the simplest

configuration when the low density flux of particles (molecules), conventionally called pro-

jectile particles, scatters by a repulsive potential centered at the origin of the coordinate

frame. The process can be imaged by the diagram shown in Fig. 2. Each scattering trajec-

tory in its incoming part can be parameterized by a transvese distance ρ from z-axis, which

is coventionally defined as impact parameter of the collision. The outgoing part of the tra-

jectory is deflected by the scattering angle θ. The impact parameter can be considered as

function of the scattering angle and for a particular trajectory is expressed as ρ = ρ(θ, E).

Because of energy conservation E = E ′ the velosity and momentum of the particle preserve

their value before and after collision - |v′| = |v| and |p′| = |p| - but change the direction.

One of these quantities either initial energy E = p2/2m = mv2/2 or velosity v = |v| or
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FIG. 2: The scattering process of a particle on a repulsive potential. As evident from the diagram

the impact parameter ρ taken for a particular trajectory can be expressed as function of deflection

angle θ and energy E: ρ = ρ(θ, E).

momentum p = |p| specifies the scattering trajectory.

Imagine that there is an ensemble of particles incident on the scattering center and out-

going in arbitrary directions. By detecting the particles scattered in a particular differential

solid angle dΩ = 2π sin θ dθ we can introduce the ratio

dσ(θ, E) =
dν

I
(1.16)

where dν is the number of such particles detected per unit time and it is normalized by the

density flux in the incident beam I. The quantity dσ is known as differential cross-section

and as evident from the diagram of Fig. 2 it is given by

dσ(θ, E) = 2π ρdρ (1.17)

or in extended form
dσ

dΩ
=

ρ(θ, E)

sin θ

∣∣∣∣dρdθ
∣∣∣∣ (1.18)

The last equation shows us that the cross-section can be found once we know the dependence

ρ = ρ(θ, E). This requires to solve the equation of motion for the particle mediated by the

scattering potential.

Consider now collision of two interacting molecules in a most typical situation when their

interaction potential U = U(r−r1) = U(|r−r1|) depends only on intermolecular separation.

This process obeys the conservation laws of total momentum and energy

p+ p1 = p′ + p′
1

p2

2m
+

p2
1

2m1

=
p′2

2m
+

p′2
1

2m1

(1.19)
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As a consequence the dynamics of such two-particle system is most naturally described in

its center-of-momentum reference frame, where the problem transforms to the configuration

of an effective single particle problem. The relative motion can be linked with dynamics

of a single particle with reduced mass µ = mm1/(m +m1) scattered by a potential center

U = U(r) = U(|r − r1|). Indeed, in this frame two identical molecules with m = m1

move symmetrically each other with the speed given by the half of the relative velocity

v0 = v − v1 as it is shown in Fig. 3. Each of the molecules moves along the scattering

FIG. 3: Two partcicles collision observed in their center-of-momentum reference frame.

trajectories similarly as shown in Fig 2 for the single particle scattering on a potential center.

Since v0 = |v0| = |v′
0| for statistical ensemble of the scattering events we can introduce the

differential cross-section similarly to Eq. (1.16)

dσ(Ω, v0) =
dν

INtar

(1.20)

where I is the density flux associated with the particles with momentum p (conventionally

named projectiles) incident with the relative speed v0 onto other particles with momentum

p1 (conventionally named targets) and Ntar is the number of targets. Then dν gives us the

number of projectiles scattered per unit time in direction Ω = θ, ϕ into a differential solid

angle dΩ = sin θdθ dϕ defined in respect to the center-of-momentum reference frame. As

far as dν is enlarged with both the numbers of projectiles and targets the cross-section is

defined as internal characteristic of an elementary scattering event.

If the above scattering process is considered in an arbitrary [laboratory] frame then the

differential cross-section would be also defined by Eq. (1.20), but with the detection angle
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directed along the linear momenta of the scattered molecules (projectiles) in the laboratory

frame. Since we consider the same scattering events dν, only observed in different reference

frames, it is crucially important to recognize that the value of the cross-section should be

the same in both the frames as well. For proper mathematical relation one has to express

the scattering angle as function of p,p1,p
′,p′

1 such that

dσ(Ω, v0) = dσ(Ω(p′ − p′
1), |p− p1|/m) ≡ dσ(p,p1 → p′,p′

1) (1.21)

This technical problem can be easy resolved by applying the simple kinematic transforma-

tions between the frames.

In the case of the disordered atomic gas there is a naturally created statistical ensemble

of colliding molecules. The positions of both the projectiles and targets occupy the same

differential volume element reproduced by the left-hand box in Fig. 1. But at the same time

the projectiles and targets belong to different momentum cells reproduced by the right-hand

box. For the in-scattering process, described by term a in (1.14), the projectiles are located

outside the selected box before collisions and get in this box after the collisions. So that we

have an ensemble of scattering events with initial momenta p′,p′
1 transferred to the final

momenta p,p1. In contrary for the out-scattering process, described by term b in (1.14),

the projectiles are located inside the selected box before collisions and get off this box after

the collisions. So that we have an ensemble of scattering events with initial momenta p,p1

transferred to the final momenta p′,p′
1. As follows from the above derivation and supporting

discussion, both the process should have identical cross-section so we can further accept the

following symmetry relation

dσ(p,p1 → p′,p′
1) = dσ(p′,p′

1 → p,p1) (1.22)

This intuitively clear assumption can be rigorously proven with applying the time reversibil-

ity arguments for microscopic dynamics in a two-particle system, for more details see [L.D.

Landau & E.M. Lifshitz ”Mechanics”; H. Goldstein ”Classical Mechanics”].

C. Boltzmann equation

Firstly, let us consider the out-scattering process. The number of target particles located in

an elementary volume of the phase space d3rd3p1 can be evaluated as

Ntar = f(r,p1, t) d
3p1d

3r (1.23)
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Recall that for mesoscopically scaled differential volume this number is expected to be suffi-

ciently large. The density flux of the projectile particles located in the volume dγ ≡ d3rd3p

is given by

I = v0 f(r,p, t) d
3p (1.24)

where v0 = |p − p1|/m. Then from Eq. (1.20) we can estimate the number of scattering

events per unit time which take the projectiles away from the volume dγ

dν = dσ(Ω, v0) v0 f(r,p, t) f(r,p1, t) d
3p d3p1d

3r (1.25)

Let us integrate this expression over d3p1 and over scattering angle dΩ (defined in respect

to the central-of-momentum reference frame!). Then in accordance with the concept and

definitions of balance relation (1.11) we arrive

b d3rd3p =

∫ ∫
dσ(Ω, v0) v0 f(r,p, t) f(r,p1, t) d

3p1 d
3rd3p (1.26)

which gives us the off-scattering contribution to the collision term in equation (1.12).

For the in-scattering process the number of target particles located in an elementary

volume of the phase space d3rd3p′1 can be evaluated as

N ′
tar = f(r,p′

1, t) d
3p′1d

3r (1.27)

The density flux of the projectile particles located in the volume d3rd3p′ is given by

I ′ = v′0 f(r,p, t) d
3p′ (1.28)

where v′0 = |p′ − p′
1|/m. Then from Eq. (1.20) we can estimate the number of scattering

events per unit time, which deliver the projectiles into the volume dγ ≡ d3rd3p

dν ′ = dσ(Ω′, v′0) v
′
0 f(r,p

′, t) f(r,p′
1, t) d

3p′ d3p′1d
3r (1.29)

where the cross-section dσ(Ω′, v′0) serves the reversed scattering process p′,p′
1 → p,p1, see

comment in the end of the previous section. As far as the momenta p′,p′
1 and p,p1 belong to

one specific trajectory selected by a certain impact parameter we can construct the functions

p′
1 = p′(p,p1); p′ = p′(p,p1) and transform the measure in the above differential relation

d3p′ d3p′1 ⇒ d3p d3p1. In accordance with the statement of the Liouville’s theorem of classical

mechanics this differential measure transform is scaled by unit Jacobian. With making use
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of the symmetry relation (1.22) and taking into account that for relative velocity v′0 = v0 we

can rewrite (1.29) in the following form

dν ′ = dσ(Ω, v0) v0 f(r,p
′, t) f(r,p′

1, t) d
3p d3p1d

3r (1.30)

Thus the in-scattering term can be expressed similarly to Eq. (1.26) for out-scattering term

a d3rd3p =

∫ ∫
dσ(Ω, v0) v0 f(r,p

′, t) f(r,p′
1, t) d

3p1 d
3rd3p (1.31)

where linear momenta p′,p′
1 are assumed to be explicitly defined by p,p1 for each scattering

trajectory specified by differential cross section (impact parameter of the collision).

Both the contribution can be incorporated in one term of the symbolic collision time

derivative (1.14)(
∂f

∂t

)
col

=

∫ ∫
d3p1 dσ(Ω, v0) v0 [f(r,p

′, t) f(r,p′
1, t)− f(r,p, t) f(r,p1, t)] (1.32)

and it is known in the kinetic theory as collision integral. With substituting it into the bal-

ance relation (1.12) we obtain a closed master equation for the probability density function

known as Boltzmann kinetic equation

∂f

∂t
+

p

m

∂f

∂r
+ F

∂f

∂p
=

∫ ∫
d3p1 dσ(Ω, v0) v0 [f

′ f ′
1 − f f1] (1.33)

where we denoted f ≡ f(r,p, t), f1 ≡ f(r,p1, t), f
′ ≡ f(r,p′, t), f ′

1 ≡ f(r,p′
1, t). This

equation was derived by famous Austrian theoretician Ludwig Boltzmann in 1872 and it

entirely opens a family of so called kinetic master equations driving the macroscopic processes

of mass/matter transfer, energy transfer, thermal conductivity, hydrodynamics and many

other non-equilibrium phenomena associated with as classical as quantum self-consistent

description of the macroscopic behavior of matter.

The external force F can be associated either with gravity

F = mg = −mg ez (1.34)

where g = −g ez is the gravitational acceleration directed opposite to z-axis, or with the

Lorentz force of electromagnetic action on charged particles

F = eE+
e

mc
[p×B] (1.35)
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FIG. 4: Ludwig Boltzmann, 1844-1906, University of Vienna, Austria, Germany

where e denotes the charge of the particle (normally of an electron or an ion in plasma) and

E = E(r, t) and B = B(r, t) are respectively electric and magnetic fields in the medium

considered at the point of the particle position.

The derived equation is not fundamental physical equation and its applicability is re-

stricted by the following assumptions concerning the spatial and temporal behavior of the

probability density function. As clear from our discussion the elementary mesoscopic volume

in position space d3r cannot be considered as infinitely small and vanishing since its minimal

scale δr is limited by a distance of interatomic interaction O(1)a0, where a0 ∼ 0.5·10−8 cm is

the Bohr radius estimating a typical size of atoms or atomic particles, or small molecules. We

have assumed by default that the spatial inhomogeneity of the probability density function

f = f(r,p, t) is weak and |∇(ln f)δr| ≪ 1. Any suggested solution of the kinetic equation

should satisfy this condition. Furthermore, when considering the dependence of function

f(r,p, t) on time we have to expect it as slow-varying during the collision time τc so that

|∂(ln f)/∂t τc| ≪ 1. Otherwise it would be impossible to think about collision as a shot-type

event with negligible duration. The time increment dt should not be considered as infinitely

short and its minimal scale δt could be taken as sufficiently longer than τc. It would be

also valuable to justify that the internal correlations as well as the complex collisions with

three or more partners, which we have ignored in our derivation, only negligibly affected

the considered kinetic evolution of the probability density function. But that makes very
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FIG. 5: Andrey Markov, 1856-1922, St-Petersburg University, Russian Empire/USSR.

subtle issue addressed to the theory of stochastic processes, which we avoid to discuss here.

We readdress the listeners to the general probability theory of stochastic processes where

the solution of Boltzmann equation is qualified as an example of so called Markovian-type

stochastic processes often met in statistical physics. Hopefully all the above pointed restric-

tions are not so robust and most of the classical disordered systems existing in either gas or

liquid phases can be described via relevant solutions of the Boltzmann equation.

From mathematical point of view the Boltzmann equation is a non-linear integro-

differential equation, and its solution would be quite difficult to construct in general case.

The differential part of this equation contains the partial derivative of the first order that

makes specific problem with the boundary conditions. Nevertheless, as we show in the next

lectures, the equation accepts approximate but physically clear transformation scheme to the

set of macroscopic equations fairly described by the standard approaches of mathematical

physics.
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D. Equilibrium state. Maxwell-Boltzmann distribution

Let us consider equation (1.31) in a particular case when (i) there is no external force F = 0,

(ii) gas is spatially homogeneous ∂f/∂r = 0, and (iii) it exits in steady state conditions

∂f/∂t = 0. Then the kinetic equation transforms to(
∂f

∂t

)
col

=

∫ ∫
d3p1 dσ(Ω, v0) v0 [f

′ f ′
1 − f f1] ≡ S(p) = 0 (1.36)

The function f = f(p) now is only function of momentum and the collision integral is

parameterized by arbitrary linear momentum p as well. Then this equation can be fulfilled

only if its integrand vanishes, so we get

f(p′) f(p′
1) = f(p) f(p1) (1.37)

Take logarithm of this equation

ln f(p′) + ln f(p′
1) = ln f(p) + ln f(p1) (1.38)

One can see that ln f should be expressed via those functions of the collision process which

sum conserves before and after collision i.e. via so named additive integrals of motion. There

is only limited number of such integrals namely number of particles, linear momentum and

energy. So we get

ln f(p) = Const + βu · p− β
p2

2m

= Const′ − β

2m
[p−mu]2 (1.39)

where Const = Const′ − βmu2/2, u and β are arbitrary constants.

Recalling the normalization condition (1.3) we arrive to the following probability density

distribution for equilibrium gas

f(p) = f0(p) =
n0

(2πmT )3/2
exp

[
−(p−mu)2

2mT

]
(1.40)

where n0 = N/V is the density of N -molecules distributed in the volume V , T = β−1 is the

gas temperature, u is an average speed of the sample considered as a bulk object. It may

seem surprising but, as follows from our derivation, the obtained Maxwell distribution is

valid for any non-ideal gas. However the tricky point is that this observation gives us only
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miserable support towards finding the thermodynamic properties of the gas or fluid and

does not help us in constructing a macroscopic equation of state, thermal capacity etc. It

is also important to point out that temperature T contributes in the derived solution (1.40)

as external parameter associated with environment.[1]

In a more general situation when the molecules interact with a stationary external force

having potential F = −∇U(r) (which can be either gravity or electric field) the steady state

solution of the kinetic equation is given by the Maxwell-Boltzmann distribution

f = f0(r,p) =
n0

(2πmT )3/2
exp

[
− p2

2mT
− U(r)

T

]
(1.41)

Evidently we have to set u = 0 for such a configuration and associate n0 with the gas density

at the point where U(r) = 0. In the case of gravity the Maxwell-Boltzmann distribution

leads to the well-known barometric formula for the pressure of a natural mixture of N2 and

O2 molecules (air-gas) in the atmosphere.

E. Low of increasing entropy. Boltzmann H-theorem

The entropy balance is a fundamental signature of irreversibility of non-equilibrium processes

driven by internal randomizing interactions in the macroscopic system. So we can expect

that the derived equation (1.33) should confirm the law of increasing entropy in an isolated

system. For the sake of simplicity consider again the situation in a particular case when (i)

there is no external force F = 0, and (ii) the gas is spatially homogeneous ∂f/∂r = 0.

The entropy is introduced as a functional of the probability density function, which is

defined as follows

S [f ] = −
∫ ∫

d3rd3pf(r,p, t) ln f(r,p, t) = S(t) (1.42)

The functional approaches its maximum for the equilibrium distribution if the following

conditions are fulfilled ∫ ∫
d3rd3p f(r,p, t) = N∫ ∫

d3rd3p
p2

2m
f(r,p, t) = ϵ̄N = Ē (1.43)

[1] Here we follow the system of units with Boltzmann constant kB = 1 so that absolute temperature T is

measured in energy units.
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where ϵ̄ is an average kinetic energy of the molecule and Ē is the total energy of the system.

It can be straightforwardly verified that

Smax = S [f0] (1.44)

where f = f0(p) is given by Eq. (1.40) considered in the internal reference frame of the

sample with u = 0. The temperature T would appear as Lagrange multiplier β = T−1

associated with the second conditions presented in Eq. (1.43). The maximum of the entropy

indicates that the system has attained a most chaotic distribution in its phase space.

The internal kinetic evolution of an isolated system is always accompanied by entropy

increase. In order to prove this statement let us consider the time derivative

dS

dt
= −

∫ ∫
d3rd3p

[
∂f

∂t
ln f +

∂f

∂t

]
(1.45)

For spatially homogeneous configuration we can omit the integral over r as unimportant

external factor, and then substitute the time derivative from the Boltzmann equation

dS

dt
∝ −

∫ ∫ ∫
d3pd3p1 dσ(Ω, v0) v0 [f ′ f ′

1 − f f1] (ln f + 1) (1.46)

The integral in the right-hand side is closed over all the momentum variables and scattering

directions. With making use - (i) of equivalence between the momenta p and p1 in respect

to the variable change p ↔ p1; (ii) of the reversibility of the scattering process in respect

to the extended change of internal variables p,p1 ↔ p′,p′
1, see Eq. (1.22); and (iii) of the

Liouville’s theorem d3p′ d3p′1 = d3p d3p1 - we can transform (1.44) to the following form

dS

dt
∝ −

∫ ∫ ∫
d3pd3p1 dσ(Ω, v0) v0 [f ′ f ′

1 − f f1] (ln f f1 − ln f ′ f ′
1) (1.47)

As one can see for either case f ′ f ′
1 > f f1 or f ′ f ′

1 < f f1 we always have

dS

dt
> 0 (1.48)

Historically this consequence of the kinetic equation has been pointed out by Ludwig Boltz-

mann for another function H(t) = −S(t), so it is known in the statistical theory as

Boltzmann H-theorem.

We conclude this section by the following remark concerning validity of the obtained

result. Of course, we can consider (1.47), (1.48) only as faithful justification but not complete

and rigorous statistical prove for the law of increasing entropy. This complicated problem
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needs much deeper insight, see our above comments concerning validity of the Boltzmann

equation itself. The definition of the entropy functional, given by (1.42), completely ignores

the correlations among the molecules and cannot be accepted for the systems considered near

the critical points (i.e. near the points of phase transitions). In those cases the macroscopic

behavior becomes extremely sensitive to quite subtle features of the interparticle interactions

and the entire system gets ability for self-organization. The correct definition of the entropy

should be based on a many particle probability density function determining the probability

to observe the system in a certain point of its complete multi-dimension phase space. For

further discussion we readdress the listeners to the special literature on statistical physics

and thermodynamics [Radu Balescu, Equilibrium and nonequilibrium statistical mechanics

(John Willey and Sons, Inc. 1975)].

Control exercises

Ex.1) Consider collision of two solid balls in their center-of-momentum reference frame.

Find the differential cross-section and verify that this type of scattering is isotropic in that

frame. Would this scattering process be isotropic in a laboratory reference frame? For this

example approve the validity of the Liouville’s theorem: d3p′ d3p′1 = d3p d3p1

Ex.2) Generalize the Boltzmann equation for a gas mixture consisting of different chemical

components.

Ex.3) Verify the solution (1.41) of the Boltzmann equation obtained in spatially inhomo-

geneous steady state conditions. Could we introduce the similar solution in the presence of

magnetic field?

Ex.4) Consider atomic gas in an equilibrium conditions with the probability density function

given by the Maxwell-Boltzmann distribution. Find the mean value for the velocity of a

molecule and for the relative velocity for a pair of the molecules.

Ex.5) Approve that the entropy functional has a maximum given by Eq. (1.44) under

conditions (1.43). What is physical meaning of the Lagrange multiplier for the condition

expressed by the first line of (1.43)?

Ex.6) Derive Eq. (1.47) from Eq. (1.46).
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II. MACROSCOPIC DESCRIPTION OF MATTER, MOTION AND ENERGY

TRANSFER

In this part of our course we link the developed microscopic kinetic approach with a hydrody-

namic approach, in-demanded for various applications and for description of the condensed

disordered matter such as non-ideal gas or liquid. We will see that under the frame of the

Boltzmann kinetic approach the well-known macroscopic equations of matter, motion and

energy transfer can be connected with certain properties of the collision integral.

A. The important properties of the collision integral

Consider the collision integral as function of external variables(
∂f

∂t

)
col

=

∫ ∫
d3p1 dσ(Ω, v0) v0 [f(r,p

′, t) f(r,p′
1, t)− f(r,p, t) f(r,p1, t)] = S(r,p, t)

(2.1)

Let us construct the following integral

G = G(r, t) ≡
∫

d3pφ(p)S(r,p, t)

=

∫ ∫ ∫
d3pd3p1 dσ(Ω, v0) v0 φ(p) [f

′ f ′
1 − f f1] (2.2)

where φ(p) is an arbitrary function of the molecule’s linear momentum, which we will specify

below. The constructed integral accumulates the complete set of the trajectories (param-

eterized by particles’ momenta and impact parameters) so we have p′
1 = p′(p,p1); p′ =

p′(p,p1) for each contributing trajectory. We can formally redefine the internal variables

p,p1 ↔ p′,p′
1 and express the integral (2.2) as follows

G =

∫ ∫ ∫
d3p′d3p′1 dσ

′(Ω′, v′0) v
′
0 φ(p

′) [f f1 − f ′ f ′
1] (2.3)

In accordance with Eq. (1.22) the collision p,p1 → p′,p′
1 and p′,p′

1 → p,p1 are provided

by the same impact parameters (i.e. the same differential cross-sections). Making use of the

Liouville’s theorem: d3p′ d3p′1 = d3p d3p1 and of conservation of the relative velocity we can

make the following compilation of (2.2) and (2.3)

G =
1

2

∫ ∫ ∫
d3pd3p1 dσ(Ω, v0) v0 [φ(p)− φ(p′)] [f ′ f ′

1 − f f1] (2.4)
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This integrates all the momenta of projectiles (p) and targets (p1) over all the scatter-

ing directions, so we can ignore conventional difference between these definitions for the

differential cross-section. Once we change variables p ⇔ p1 we obtain the following relation

G =
1

4

∫ ∫ ∫
d3pd3p1 dσ(Ω, v0) v0 [φ(p) + φ(p1)− φ(p′)− φ(p′

1)] [f
′ f ′

1 − f f1] (2.5)

Let us make the following three specific choices of function φ = φ(p)

φ(p) = 1

φ(p) ⇒ p

φ(p) =
p2

2m
(2.6)

Then we get G = G(r, t) ≡ 0, which can be interpreted as macroscopic manifestation

of the microscopic conservation laws associated with the two-particle collision. Indeed, the

obtained result can be written in a symbolic balance form expressed in terms of the collision-

type time derivative so that ∫
d3p

(
∂f

∂t

)
col

=
∂

∂t
n(r, t)

∣∣∣∣
col

= 0 (2.7)

means conservation of the density of the molecules (i. e. number of particles located in an

elementary spatial volume). Next integral∫
d3pp

(
∂f

∂t

)
col

=
∂

∂t
[⟨p⟩n(r, t)]

∣∣∣∣
col

= 0 (2.8)

means conservation of the local density of momentum and∫
d3p

p2

2m

(
∂f

∂t

)
col

=
∂

∂t

[⟨
p2

2m

⟩
n(r, t)

]∣∣∣∣
col

= 0 (2.9)

means conservation of the local density of energy. In other words for any elementary volume

in the coordinate space, considered at a certain moment of time, the total number of particles,

total linear momentum and kinetic energy are unchanged in result of collision process.

B. Cross-over from the kinetic to hydrodynamic approach

The probability density function itself contains excessive information about momentum dis-

tribution, which is not so necessarily to know for description of the macroscopic hydrody-

namic processes. The results of previous section encourage us to convert the kinetic equation
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to the set of equations expressed directly for the parameters of the local density, flow velocity,

and energy density, associated with the chaotic motion, inside the continuous medium.

Let us integrate the Boltzmann equation over the momentum p. Then for the first term

in the left-hand side of (1.33) we get∫
d3p

∂f

∂t
=

∂

∂t

∫
d3p f(r,p, t) =

∂

∂t
n(r, t) (2.10)

The second term can be similarly transformed∫
d3p

p

m

∂f

∂r
=

∂

∂r

∫
d3pvf(r,p, t) =

∂

∂r
[n(r, t)u(r, t)] (2.11)

where

u(r, t) =

∫
d3pvf(r,p, t)∫
d3p f(r,p, t)

=
1

n(r, t)

∫
d3pv f(r,p, t) (2.12)

is the flow velocity. The last term in the left-hand side vanishes after its integration over

the momentum variable. Indeed if F = F(r, t) we straightforwardly obtain∫
d3pF(r, t)

∂f

∂p
= F

∫
d3p

∂f

∂p
= Fx

∫ ∫
dpydpz

∫ ∞

−∞
dpx

∂f

∂px
+ . . .

= Fx

∫ ∫
dpydpz f

∣∣∣∣px→∞

px→−∞
+ . . . = 0 (2.13)

where ellipses denote other projections. For magnetic component of the Lorentz force it is

convenient to apply tensor notations so it is similarly transformed as∫
d3pF

∂f

∂p
=

e

mc

∫ ∫ ∫
d3p ϵijk pjBk

∂f

∂pi
=

e

mc

∫ ∫
d2p ϵijkpjBk f

∣∣∣∣pi→∞

pi→−∞
= 0 (2.14)

where we made use that i ̸= j in the Levi-Cevita symbol ϵijk = ±1 (where the (±)-sign is

determined by either ”even” or ”odd” parity for the number of transpositions required to

order the indices from 1, 2, 3 → i, j, k ).

With having in mind Eq. (2.7) we obtain the well known continuity equation always valid

for any continuous medium and reproducing the conservation law of matter itself

∂

∂t
ρ(r, t) + div [ρ(r, t)u(r, t)] = 0 (2.15)

where we introduced the local [volumetric] mass density ρ(r, t) = mn(r, t) as more common

parameter in the hydrodynamic description of a continuous matter.
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With multiplying Boltzmann equation on the momentum p we can attempt to derive the

equation of motion for the flow velocity u(r, t). The first term in the left-hand side of (1.33)

is transformed as follows∫
d3pp

∂f

∂t
=

∂

∂t

∫
d3ppf(r,p, t) =

∂

∂t
[ρ(r, t)u(r, t)] (2.16)

For the transformation of the second term it is convenient to use tensor notations∫ ∫ ∫
d3p pi

(
p

m

∂f

∂r

)
=

∫ ∫ ∫
d3p pi

pj
m

∂f

∂xj

= m
∂

∂xj

∫ ∫ ∫
d3p vivjf

=
∂

∂xj

[Pij + uiujρ] (2.17)

where we denoted

Pij = Pij(r, t) = m

∫ ∫ ∫
d3p [vi − ui(r, t)] [vj − uj(r, t)] f(r,p, t) (2.18)

and it introduces so named momentum flux tensor, which evaluates the transfer of either

i-th or j-th momentum component of the chaotic motion transported in either j-th or i-th

directions. This tensor is evidently symmetric Pij = Pji and the random molecule velocity

is centered here at the mean value of the local flow velocity.

The last term in the left-hand side of the kinetic equation can be independently trans-

formed for the external forces of different types. If F = F(r, t) we get∫ ∫ ∫
d3p pi

(
F
∂f

∂p

)
=

∫ ∫ ∫
d3p pi Fj

∂f

∂pj
= Fj

∫ ∫
d2p pif

∣∣∣∣pj→∞

pj→−∞
− Fj

∫ ∫ ∫
d3p

∂pi
∂pj

f

= −Fi n ≡ −Fi (2.19)

where F(r, t) = F(r, t)n(r, t) is a volumetric density of the external force. For the magnetic

component of the Lorentz force we get∫ ∫ ∫
d3p pi

e

mc
[p×B]j

∂f

∂pj
= . . .− e

mc

∫ ∫ ∫
d3p [p×B]i f = −e

c
[nu×B]i

= = −1

c
[j×B]i ≡ −Fi (2.20)

where ellipses denote the vanishing partial integral with the f -function taken at pj → ±∞.

Here we introduced the current density vector for the charged particles in plasma j =
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FIG. 6: An elementary fluid volume (indicated in dashed) is shown as drifting with the flow,

interacting with environment (with the molecules from other proximal volumes), and driven by

the external force F. The dynamics of the process is described by the convective time derivative

D/Dt ≡ ∂/∂t + u∇, which contributes to the respective equation of motion based on the second

Newton’s law.

j(r, t) = e n(r, t)u(r, t). So F has the same above given meaning of a volumetric density of

the magnetic component of the Lorentz force.

Eventually in accordance with (2.8) we obtain the following macroscopic equation of

motion
∂

∂t
(ρui) +

∂

∂xj

[Pij + uiujρ] = Fi (2.21)

which with the aid of continuity equation (2.15) can be transformed to

∂

∂t
ui(r, t) + [u(r, t) · ∇]ui(r, t) = − 1

ρ(r, t)

∂

∂xj

Pij(r, t) +
1

ρ(r, t)
Fi(r, t) (2.22)

In the derived equation its left-hand side performs acceleration of an elementary fluid volume

drifting with the flow so that the total convective time derivative consists of both the partial

time derivative and drift terms. The physical meaning of the convective derivative is clarified

in Fig. 6.

Equation (2.22) describes the mechanical motion of an elementary fluid volume affected

by the second Newton’s law. The acceleration of the volume is mediated by two physical

processes. First is an external force given by the last term in the right-hand side of the

equation. The first term reveals the precursor of viscosity and describes the interfere between

the different fluid volumes. As one can see here the microscopic nature of viscosity is

connected with the mixing of the molecules from proximal volumes of a fluid flow. This
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friction-type force can exist only in the non-equilibrium regime in a medium disturbed by

external action and is characterized by the momentum flux tensor (2.18).

Let us introduce the mean value of kinetic energy associated with the chaotic motion of

the molecules ∫
d3p

m[v − u(r, t)]2

2
f(r,p, t) ≡ n(r, t)W (r, t) ≡ ρ(r, t)U(r, t) (2.23)

where W (r, t) is the average energy density of chaotic motion normalized to unit volume and

U(r, t) is the same density but normalized to unit mass. With addressing to the problem

of non-equilibrium thermodynamics the introduced quantity U(r, t) is normally called as

thermal energy or thermal internal energy of the medium and it contributes to the equation

of heat transfer, to the entropy balance and to the temperature distribution in a Boltzmann

gas.

With multiplying Boltzmann equation on m[v − u(r, t)]2/2 and integrating it over the

momentum p we can attempt to derive the equation of heat transfer. Then the first term

in the left-hand side of the Boltzmann equation (1.33) is transformed as follows∫
d3p

m[v − u]2

2

∂f

∂t
=

∂

∂t

∫
d3p

m[v − u]2

2
f +m

∂u

∂t

∫
d3p [v − u]f =

∂

∂t
[ρU ] (2.24)

where the last integral vanishes because of ⟨v⟩ = u. The second term is transformed as∫
d3p

m[v − u]2

2
v
∂f

∂r
=

∂

∂r

∫
d3p

m[v − u]2

2
v f +m

∂ui

∂xj

∫
d3p [vi − ui] vj f

= div[J+ u ρU ] +
∂ui

∂xj

Pij (2.25)

where

J = J(r, t) =

∫
d3p

m[v − u(r, t)]2

2
[v − u(r, t)] f(r,p, t) (2.26)

is the so named heat flux or heat flux density and the momentum flux tensor was earlier

introduced by Eq. (2.18). The third term in the left-hand side of the Boltzmann equation

vanishes since the integral ∫
d3p

m[v − u]2

2
F
∂f

∂p
= 0 (2.27)

for the external force of any type. We leave this statement as to be proven by the listeners

and just point out here its physical evidence. Indeed the external force can only mediate

the mechanical motion of the gas, as shown in Fig. 6, and cannot affect the internal chaotic

motion inside the medium.
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In accordance with (2.9) we obtain the following equation of the heat transfer

∂

∂t
[ρU ] + div[J+ u ρU ] +

∂ui

∂xj

Pij = 0 (2.28)

which with the aid of continuity equation (2.15) can be transformed to

∂

∂t
U(r, t) + [u(r, t) · ∇]U(r, t) = − 1

ρ(r, t)
Pij(r, t)

∂

∂xj

ui(r, t)−
1

ρ(r, t)
div[J(r, t)] (2.29)

where in the left-hand side we have constructed the same convective time derivative as in

equation of motion (2.22). As one can see the internal thermal energy of the medium is

balanced by two processes: (i) the dissipation of the kinetic energy of the regular motion,

which is expressed by the first term in the right-hand side; (ii) and by the heat transfer

between different parts of the medium, which is expressed by the second term in the right-

hand side.

Although the derived equations have quite natural physical interpretation they mostly

useless for practical implementations. That is because these equations are not closed and

contain the momentum flux tensor (2.18) and the heat flux vector (2.26) as unknown pa-

rameters of the non-equilibrium processes. These quantities are defined as the statistical

momenta of higher order, which could be evaluated only if the probability density function

was known. Apparently it would be impossible to construct the separate equations for such

statistical momenta as far as the collision integral would not vanish in that case. That

turns us back to the main problem of solution of the Boltzmann equation at least in certain

approximations, which we will do in the next part of our course.

C. Equation of motion for an ideal incompressible fluid

The equation of motion can be considered as closed for a specific example of ideal

incompressible fluid. Let us assume that the mass density ρ = const and ignore any mani-

festation of viscosity such that the momentum flux tensor has diagonal form

Pij(r, t) = δijP (r, t) (2.30)
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FIG. 7: Leonhard Euler, 1707-1783 - University of Basel, Switzerland and Kingdom of Prussia;

Imperial Russian Academy of Sciences, St-Petersburg, Russian Empire.

where P = P (r, t) should be associated with the local pressure of the fluid substance. Indeed

the equation of motion (2.22) and continuity equation (2.15) are transformed to

D u

Dt
≡ ∂ u

∂t
+ [u · ∇]u = −1

ρ
gradP +

1

ρ
F

divu = 0 (2.31)

With constructing integral over an arbitrary volume of the sample and converting it to the

surface integral over the bounding surface S

−
∫
d3r gradP = −

∮
dSP (2.32)

we arrive to the conventional definition of the pressure as an internal surface force press-

ing a unit area inside the medium. Furthermore the pressure and the active force F can

be considered as given external parameters driving the flow motion and equations (2.31)

become closed. In hydrodynamics they are known as Euler equations (Not to be confused

with Euler’s equation of rigid body dynamics!). Leonhard Euler was the famous Russian

academician who proposed a lot of brilliant ideas in mechanics, hydrodynamics and had

contributed to the fundamental areas in mathematics such as theory of complex numbers,

differential equations etc..
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Of course, such a simplified description of the fluid dynamics can be considered only as

initial and quite rough approximation. But for the flow with rather small viscosity but at

the same time described by a large Reynolds number (Re = ρ u∞ L/η ≫ 1, where L is the

scale of a macroscopic object, η is the matter viscosity, and u∞ is the asymptotic speed

of the fluid stream sweeping the object) it gives a good starting point for constructing a

suitable solution of the entire hydrodynamic equations. As example, for the steady state

regime the flow of ideal fluid obeys the so named Bernoulli’s principle

ρu2

2
+ P + ρ gz = const (2.33)

which is conserved along any streamline of incompressible ideal fluid. From an engineering

point of view that gives simple estimate for the balance between the pressure and local flow

velocity in a fluid stream transporting through pipes or inside spatially bounded volumes.

Control exercises

Ex.1) Verify that for a two-particle collision the angular momentum conservation low r ×

p+ r1 × p1 = r′ × p′ + r′1 × p′
1 (where r, r1, r

′, r′1 are the spatial coordinates of the particles

before and after collision defined in respect to any reference frame) is a direct consequence

of the conservation laws for linear momentum and energy and therefore is already included

into the macroscopic balance equations (2.7)-(2.9).

Ex.2) Evaluate integral (2.27) and show that it vanishes for any type of external force.

Ex.3) Consider the continuity equation (2.15) in the stationary case ∂ρ/∂t = 0 when

divρu = 0. There are two types of the fluid flow associated with this conditions. The

streamlines can be performed by either open lines (tubes) or by closed circuits. What kind

of differential criteria for u = u(r) describe the fluid motion for either of these cases.

Ex.4) Approve the identity (2.32) as a consequence of divergence theorem, also known as

Gauss’s theorem or Ostrogradsky’s theorem.

Ex.5) For ideal two-dimensional fluid stream introduce the scalar potential and scalar stream

functions. What is the mathematical and physical difference between these quantities? Find

the differential equations for these functions. Combine both the functions into one complex-
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number potential with expressing x, y coordinates as one complex variable z = x+ i y in the

complex plane.

Ex.6) The streamlines are defined as the geometrical lines along which the differential

increments dlx, dly and dlz obey the rule

dlx
ux

=
dly
uy

=
dlz
uz

Approve the Bernoulli’s principle (2.33) for ideal incompressible fluid. What are the physical

conditions justifying the incompressibility as an accessible assumption for a real fluid? Verify

that in such a case the flow velocity, contributing into the Reynolds number associated with

the macroscopic object swept by the fluid stream, should be much less than the speed of

sound in the medium.
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III. BASIC EQUATION OF HYDRODYNAMICS IN CLOSED FORM

A. Local thermodynamic equilibrium

As we known the equilibrium conditions the solution of Boltzmann equation is given

by Eq. (1.40) with a given temperature T = const, flow velocity u = const, and density

n = const. It seems quite natural to think about a general non-equilibrium systems as

structured by a number of small subsystems, which are in internal equilibrium themselves

but not in equilibrium each other. Then we can expect that the probability density function

has the same form (1.40), but the above parameters should be considered as function of

spatial position and time and be associated with an instant macroscopic state of a particular

subsystem, so that T = T (r, t), u = u(r, t) and n = n(r, t). Once these parameters are

slow varied functions of their arguments the entire hydrodynamic process is called as local

thermodynamic equilibrium.[2]

Considering the the system parameters as slow-varying, smooth and continuous functions

of position and time, one can assume the probability density function in the following form

f (0) = f (0)(r,p, t) =
n(r, t)

(2πmT (r, t))3/2
exp

[
−(p−mu(r, t))2

2mT

]
(3.1)

In accordance with our basic assumption the functions T = T (r, t), n = n(r, t), and each

vector component of u = u(r, t) should obey the inequalities

|∇ lnT |Λ ≪ 1, |∇ lnn|Λ ≪ 1,

∣∣∣∣∂ui

∂xj

∣∣∣∣Λ ≪ |u|∣∣∣∣ ∂∂t lnT
∣∣∣∣ τ ≪ 1,

∣∣∣∣ ∂∂t lnn
∣∣∣∣ τ ≪ 1,

∣∣∣∣∂ui

∂t

∣∣∣∣ τ ≪ |u| (3.2)

where Λ and τ are respectively the mean free path and flight time for a molecule in the

medium.

Substitute approximation (3.1) in the definitions of the momentum flux tensor (2.18) and

[2] It is noteworthy to point out that the considered macroscopic state is not a general non-equilibrium

matter state. Inside any elementary volume of a piece of matter its different chemical components or even

different internal degrees of freedom (such as spin, vibrational, etc.) of the same component can have

different temperatures and density distributions.
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thermal flux (2.26)

P
(0)
ij (r, t) = m

∫
d3p [vi − ui(r, t)] [vj − uj(r, t)] f

(0)(r,p, t) = n(r, t)T (r, t)δij

J(0)(r, t) =

∫
d3p

m[v − u(r, t)]2

2
[v − u(r, t)] f(r,p, t) (3.3)

With accepting that the non ideal gas approximately satisfies the macroscopic equation of

state of ideal gas we get nT = P , where P = P (r, t) is instant value of the local pressure.

Then the basic hydrodynamic equations, introduced in the previous section, can be simplified

to the following form

∂ρ

∂t
+ div [ρu] = 0

∂ u

∂t
+ [u · ∇]u = −1

ρ
gradP +

1

ρ
F

∂ U

∂t
+ [u · ∇]U = −P

ρ
divu (3.4)

Within the made approximations, and after evaluating integral (2.23), the thermal energy

can be expressed by the temperature distribution

ρU =

∫
d3p

m[v − u]2

2
f (0) =

3

2
nT

U = U(r, t) =
3

2

T (r, t)

m
(3.5)

and the hydrodynamic equations can performed in the following closed form

∂ρ

∂t
+ div [ρu] = 0

∂ u

∂t
+ [u · ∇]u = −1

ρ
gradP +

1

ρ
F

∂ T

∂t
+ [u · ∇]T = −2

3
T divu (3.6)

where in the second line we accept the equation of state P = ρT/m .

Although we obtain here an evident generalization of the Euler equations (2.31), which

are now valid for compressible gas, nevertheless its applicability is strongly restricted by

quite rough approximation of the weak and even negligible non-ideality. Such important

physical phenomena as fluid viscosity, thermal conductivity etc. are completely lost in the

above derivation. These phenomena are strongly connected with the internal interaction

processes and can be properly introduced after solution of the kinetic Boltzmann equation

with better accuracy than simple zero-level approximation (3.1).
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B. Chapman-Enskog method for solution of the Boltzmann kinetic equation

The method allows to find the solution of the Boltzmann equation with considering non-

ideality as leading to a small correction of the basic approximation (3.1). The interaction

itself can be strong but the deviation of the system state from the local thermal equilibrium

is scaled by large spatial inhomogeneity and by long relaxation time. In other words, all the

derivatives in the left-hand size of the Boltzmann equation give only small increments on a

spatial scale Λ and for duration τ . For the system parameters that is justified by inequalities

(3.2). We will also assume that the external driving force only slightly affects the random

motion of the molecule on a distance Λ and on a time scale τ .

Let us reproduce the Boltzmann equation (1.33) in the following form

∂f

∂t
+

p

m

∂f

∂r
+ F

∂f

∂p
=

1

ϵ

∫ ∫
d3p1 dσ(Ω, v0) v0 [f

′ f ′
1 − f f1] ≡

1

ϵ
S[f, f1] (3.7)

which emphasizes that the collision integral, denoted here as S[f, f1], can be entirely un-

derstood as a functional of the probability density function. The formal number parameter

ϵ = 1, but it lets us construct the searched solution by its expansion in the power series of

ϵ0, ϵ1, ϵ2, . . . as analytical function

f(r,p, t) = f (0)(r,p, t) + ϵf (1)(r,p, t) + ϵ2f (2)(r,p, t) + . . . (3.8)

In the main order in this power expansion, substituted into the Boltzmann equation, i.e. for

power ϵ−1, f (0) is given by the local equilibrium distribution (3.1) and fulfils the equation

0 = S[f (0), f
(0)
1 ] (3.9)

in the order of ϵ0 we get

∂f (0)

∂t
+

p

m

∂f (0)

∂r
+ F

∂f (0)

∂p
= S[f (0), f

(1)
1 ] + S[f (1), f

(0)
1 ] (3.10)

and in the next order of ϵ1 we obtain

∂f (1)

∂t
+

p

m

∂f (1)

∂r
+ F

∂f (1)

∂p
= S[f (0), f

(2)
1 ] + S[f (2), f

(0)
1 ] + S[f (1), f

(1)
1 ] (3.11)

and so on. In accordance with the above arguments we will consider this expansion as

rapidly converging, such that f (0) ≫ f (1) ≫ f (2) ≫ . . .
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FIG. 8: Sydney Chapman, 1888-1970 - University of Manchester, University of Cambridge,

Imperial College London, University of Oxford, The Queen’s College, Oxford Royal Observatory,

Greenwich, Great Britain.

FIG. 9: David Enskog, 1884-1947 - Université d’Uppsala, Sweden.
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