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Light scattering from an atomic array trapped near a one-dimensional nanoscale waveguide:
A microscopic approach
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The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to interesting photon
transport properties, such as recent experimental demonstrations of large Bragg reflection, and paves the way
for a variety of potential applications in the field of quantum nonlinear optics. Here, we present a theoretical
analysis for the process of single-photon scattering in this configuration using a full microscopic approach.
Based on this formalism, we analyze the spectral dependencies for different scattering channels from either
ordered or disordered arrays. The developed approach is entirely applicable for a single-photon scattering from
a quasi-one-dimensional array of multilevel atoms with degenerate ground-state energy structure. Our approach
provides an important framework for including not only Rayleigh but also Raman channels in the microscopic
description of the cooperative scattering process.
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I. INTRODUCTION

Efficient control of light-matter interaction at the single-
photon level is a central and challenging task for quantum
optics and quantum information science [1–7]. At the fun-
damental level, this interaction manifests itself via the basic
quantum electrodynamics processes of spontaneous emission,
absorption, and scattering of a single photon by a single atom.
In free space, the efficiency of this interaction is limited by the
small atomic scattering cross section in comparison to the usual
large beam shining area. However, it can be greatly enhanced
by placing a single atom in the vicinity of a subwavelength
waveguide due to the Purcell effect [8] or by considering large
atomic ensembles [9]. The combination of these approaches
has motivated recent experimental efforts towards the develop-
ment of novel platforms that integrate an atomic chain coupled
with a dielectric nanoscale waveguide [10–16].

One example of such platforms is the so-called subwave-
length nanofiber [15–20]. Due to a large evanescent field, the
guided light can be efficiently used for trapping atoms close to
the surface [21–23] and interacting with them [24–27]. Recent
experiments include, for instance, the demonstration of optical
memories in this setting [28,29]. The trapping technique can
also be adjusted to arrange atoms in an optical lattice commen-
surate or nearly commensurate with the resonant wavelength.
Such capability enables one to investigate Bragg reflection
[30,31] and long-range interactions [32].

These recent experiments and supporting theoretical studies
[33–36] have shown that light scattering from atoms interacting
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with the evanescent field of the waveguide mode has important
differences from the light scattering from atoms in free space.
The effects of Zeeman degeneracy of an atomic transition
should be taken into consideration for a relevant description
of the Raman channels, which at the present time has been
primarily studied in free space [37,38]. The problem becomes
more complicated as the strong-field confinement provided
by the nanofiber imposes an inherent link between the local
polarization and propagation direction of light. In such a
strongly nonparaxial regime, the spin and orbital angular
momentum of the guided light obey joint dynamics and cannot
be independently considered. In particular, it leads to direction-
sensitive emission and absorption of the guided light by the
atoms [30,39–42].

All these experimental results and theoretical works demon-
strate that such a hybrid system is a versatile platform for
studying various cooperative effects emerging from both the
collective atomic structuring and the waveguide-mediated
long-range coupling between atoms. The internal correlations,
existing in a many-particle microscopic quantum entangled
state, can play an essential role in the cooperative scattering
process. In this context, an ab initio theoretical insight on the
problem of light-atoms interaction would provide a natural
extension of the convenient but sometimes insufficient self-
consistent description, based on the density matrix approach
and the Maxwell-Bloch formalism.

To clarify the last statement, let us be more concrete and
point out that any self-consistent description of a many-body
problem conventionally assumes the physical equivalence in
description of proximal particles and underestimates the role of
internal correlations. But for dense atomic systems, the mutual
correlations are an attribute of their exact microscopic dynam-
ics, which can be manifestable when cooperative processes
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of light spontaneous emission or scattering, generally associ-
ated with the Dicke-type super- and subradiance phenomena,
become sensitive to the spatial distribution of atomic dipoles
and to the excitation conditions; see [7,43,44]. Such a situation
takes place when the cooperative phenomena are considered
for atoms confined and interacted with nanoscale structures.
For the subwavelength waveguide systems, this has motivated
researchers to extend the Maxwell-Bloch formalism toward
a more rigorous Heisenberg-Langevin approach based on
the effective Hamiltonian concept; see [33–36]. But for the
particular case of a single-photon scattering, the problem can
be described in the more natural formalism of the quantum
scattering theory. The present paper develops such a systematic
microscopic theory of light scattering from an atomic array
trapped near a nanofiber, taking into account the entire interac-
tion dynamics together with the complete angular momentum
structure of the guided light and the degenerate energy structure
of the atoms.

The paper is organized as follows. In Sec. II, we first
provide a general description of our microscopic approach of
light scattering in a waveguide configuration and emphasize
the differences with a similar process in free space. The
derivation details concerning the modification of the electric-
field Green’s function near the nanofiber are given in Appendix
A. In Sec. III, we then present numerical simulations for light
scattering from an array consisting of five atoms. Ordered
and disordered configurations are considered. The parameters
of the waveguide mode used in the simulation are given in
Appendix B. Finally, Sec. IV concludes the paper.

II. THE SCATTERING PROBLEM REVISED
FOR A WAVEGUIDE CONFIGURATION

In this section, we review the basic points of the quantum
scattering problem. Normally introduced in terms of the
transformation of plane waves, it is extended here to the
specific configuration where the input and output states are
fundamental modes of the waveguide.

A. Mathematical framework

The mathematical framework of the quantum scattering
problem is based on the concept of the asymptotic evolutionary
operator Ŝ that transforms the system states from infinite past
|ψ〉in to infinite future |ψ〉out as a result of the interaction pro-
cess [45]. In the interaction representation, the corresponding
asymptotic transformation is given by

|ψ〉out = e
i

2h̄
H0τ e− i

h̄
H τ e

i
2h̄

H0τ |ψ〉in ≡ Ŝ|ψ〉in, (2.1)

where τ → +∞. The operator Ŝ can be represented as a matrix
in a decoupled basis of two interacting subsystems, which we
specify as |φi〉 for the initial and |φf 〉 for the final system states,

Sf i = δf i − 2i
sin[(Ef − Ei)τ/2h̄]

Ef − Ei

Tf i(Ei + i0)

⇒ δf i − 2πi δ(Ef − Ei) Tf i(Ei + i0). (2.2)

The first term selects a noninteractive contribution and the
interaction part constructs the T matrix, i.e., the transition
amplitude between the states with the same energy, Ef = Ei .

The latter requires infinitely long “interaction” time, τ →
+∞. The T matrix, considered as a function of arbitrary
complex energy argument E, is expressed as follows:

T̂ (E) = V̂ + V̂
1

E − Ĥ
V̂ , (2.3)

where

Ĥ = Ĥ0 + V̂ . (2.4)

Ĥ0, V̂ , and Ĥ are the unperturbed Hamiltonian, the interacting
part, and the total system Hamiltonian, respectively.

For a particular case of a single-photon scattering on an
ensemble of N atomic dipoles, the interaction part is given by

V̂ = −
N∑

a=1

d̂(a) · Ê(ra) + Ĥself . (2.5)

The first term accumulates partial interactions for each of an
ath atomic dipole d(a) with an electric field Ê(r) at the point
of the dipole’s position. The second term is the dipole’s self-
energy part, which is mainly important for renormalization of
the self-action divergencies [7,46,47]. The field operator can
be expressed by a standard expansion in the basis of plane
waves as

Ê(r) ≡ Ê(+)(r) + Ê(−)(r)

=
∑

j

(
2πh̄ωj

V

)1/2

i[ej aj e
ik·r − e∗

j a
†
j e

−ik·r], (2.6)

where j ≡ k,α is the complex mode index with the mode wave
vector k, frequency ωj = c k, and α = 1,2 numerating two
orthogonal transverse polarization vectors ej ≡ ekα for each k.
Here, aj and a

†
j are the annihilation and creation operators for

the j th field’s mode in free space and the quantization scheme
includes the periodic boundary conditions in the quantization
volume V = L3.

According to the standard assumptions of the time-
dependent scattering theory in free space, the infinite “in-
teraction” time τ is physically associated with the duration
with which the photon’s wave packet overlaps and passes the
scattering object. As far as the wave packet tends to approach
the monochromatic state, its duration should approach infinity
and, as a consequence, this justifies the presence of the δ

function and energy conservation in Eq. (2.2). However, the
transfer τ → +∞ should be done only in the final step
of the derivation procedure together with constructing the
main physical characteristics of the process such as transition
probability per unit time, scattering tensor, and cross section.
The derivation is based on the arguments of time-dependent
perturbation theory, where the field subsystem is considered as
a plane-wave contribution into the states |φi〉 and |φf 〉 posed
with periodic boundary conditions into a certain quantization
volume with a length scale L that is the same as assumed in
expansion (2.6). Because of it, for any wave packet, its longest
duration τ is naturally limited by the time scale associated with
the quantization length L and both of these parameters should
approach infinity consistently such that τ = L/c → +∞.
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FIG. 1. Light scattering from an atomic array trapped near a
subwavelength dielectric waveguide. The atoms, which are located
at a distance ρ − a from the surface, are spin oriented along the
waveguide and the incident light is in the left-handed polarized
waveguide mode. The scattered light leaves the one-dimensional
channel in either the forward or backward direction.

B. Light scattering within the waveguide

We now consider the case where the incident photon
impinges on a cylindrical single-mode nanoscale dielectric
waveguide in its fundamental HE11 mode [48]. We focus on
a specific process where both the incident and the scattered
photons belong to the fundamental mode, i.e., only forward
or backward scattering occurs inside the waveguide. Actually
there is a continuum of the waveguide modes propagating along
the fiber as translational waves parameterized by a longitudinal
wave number k and posed with a periodic boundary conditions
into a longitudinal quantization segment of length L. The
geometry of the scattering process is shown in Fig. 1.

For such a specific scattering geometry, Eq. (2.2) is valid
since it is based on a general perturbation-theory analysis ap-
plied to any quantum system with continuous spectrum. How-
ever, the scattering channel is now described by transmission
and reflection probabilities instead of scattering cross section.
The singularity of the second term in the definition of the S

matrix can be naturally regularized by associating the initial
and final states with the wave packets having longitudinal
lengthL. In accordance with the physical interpretation of time
τ as the duration with which the photon’s wave packets overlap
and pass the scattering object, we have τ = L/vg → ∞, where
vg = dω/dk is the group velocity for the fundamental mode
at frequency ω associated with either incident or scattered
photons. Here we neglect a possible difference in group
velocities for the case of Raman-type scattering caused by
transitions in the atomic spin subsystem.

Thus for the scattering within waveguide modes and in
the limit L → ∞, the singular form of relation (2.2) can be
regularized as follows:

Si ′i = δi ′i − i
L

h̄vg

Ti ′i(Ei + i0), (2.7)

where we redefined f = i ′ emphasizing thereby the physical
equivalence of initial and final states for light scattering within
the waveguide modes. The energy conservation Ei ′ = Ei is
fulfilled in the applied regularization and we shall further treat
the S-matrix components given by Eq. (2.7) in the original
physical meaning as the probability amplitudes between the
initial and final states.

As a next step, we keep the interaction operator in the
form of Eq. (2.5), but reexpand the field operator (2.6) in the
complete basis of the guided and external modes,

Ê(r) =
∑

s

(2πh̄ωs)
1/2i[bsE(s)(r) − d†

s D(s)∗(r)] + · · · .

(2.8)

Here we selected only the contribution of the guided modes,
enumerated by the mode index s, for the electric field E(s)(r)
and the displacement field D(s)(r) = ε(r) E(s)(r), where ε(r)
is the spatially dependent dielectric permittivity of the entire
medium (free space and the dielectric nanofiber). The modes
are specified by Eqs. (A6) and (A8) in Appendix A, and the
ellipsis in Eq. (2.8) denotes the contribution of external modes.
The mode operators are given by

bs =
∑

k,α=1,2

akα

(
ωfree

k

ω
wg
s

)1/2
1√
V

∫
d3r D(s)∗(r) · ekα eik·r,

d†
s =

∑
k,α=1,2

a
†
kα

(
ωfree

k

ω
wg
s

)1/2
1√
V

∫
d3r e−ik·r e∗

kα · E(s)(r).

(2.9)

The expansion (2.8) is identical to the basic definition (2.6) due
to orthogonality and completeness relations for the complete
set of the guided and external modes. In expression (2.9), we
additionally labeled the mode frequencies for distinguishing
the field’s mode in the presence of the waveguide, ω

wg
s ≡ ωs ,

and in free space, ωfree
k ≡ ωj = c k.

Because of the difference in mode representation in terms
of the electric and the displacement fields, the operators bs and
d
†
s are not Hermitian conjugated counterparts. Nevertheless,

they are candidates for, respectively, annihilation and creation
operators of a photon in a specific waveguide mode. It may
seem that the difference between ω

wg
s and ωfree

k prevents their
commutation relations from fulfilling the standard bosonic
operators. But for the waveguide, designed as a dielectric
nanofiber with diameter less than the wavelength of the guided
light, the free-space modes with ωfree

k 
 ω
wg
s mainly dominate

in the overlapping integral in (2.9) such that the respective fac-
tor vanishes in these expansions. Then we can safely accept that
operators bs and d

†
s obey the standard bosonic commutation

rules, [bs,d
†
s ′ ] = δs,s ′ . To prove this statement, it is important to

take into account that the mode of displacement field D(s)(r) has
transversal profile in the reciprocal k representation because of
divD(s)(r) = 0.

For the considered process, in the case of a near-resonant
scattering, the matrix element of the transition operator (2.3)
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can be disclosed by the following expansion:

Tg′s ′,g s(E)=2πh̄
√

ωs ′ωs

×
N∑

b,a=1

∑
n′,n

(
d · D(s ′)(rb)

)∗
n′m′

b

(
d · E(s)(ra)

)
nma

×〈. . . m′
b−1,n

′,m′
b+1. . . | ˜̂R(E)|. . . ma−1,n,ma+1. . .〉,

(2.10)

where ωs and ωs ′ are the frequencies of incident and scattered
photons, respectively. The transition amplitude is intrinsically
determined by the matrix element of the resolvent operator
of the system Hamiltonian projected onto a collective atomic
state with a single optical excitation,

˜̂R(E) = P̂ R̂(E) P̂ ≡ P̂
1

E − Ĥ
P̂ . (2.11)

The projector P̂ is given by

P̂ =
N∑

a=1

∑
{mj },j �=a

∑
n

|m1, . . . ,ma−1,n,ma+1, . . . ,mN 〉

×〈m1, . . . ,ma−1,n,ma+1, . . . ,mN | × |0〉〈0|field, (2.12)

and selects in the atomic Hilbert subspace the entire set of
the states where any j th of N − 1 atoms populates a Zeeman
sublevel |mj 〉 in its ground state and one specific ath atom (with
a running from 1 to N and j �= a) populates a Zeeman sublevel
|n〉 of its excited state. The field subspace is projected onto its
vacuum state and operator ˜̂R(E) can be further considered as
a matrix operator acting only in atomic subspace.

In the representation of the T matrix by the expansion
(2.10), the selected specific product of matrix elements runs
all the possibilities when the incoming photon is absorbed by
any ath atom and the outgoing photon is emitted by any bth
atom of ensemble, including the possible coincidence a = b.
The initial atomic state is given by |g〉 ≡ |m1, . . . ,mN 〉 and
the final atomic state by |g′〉 ≡ |m′

1, . . . ,m
′
N 〉, where atoms

can populate all the accessible internal states. Thus for the
system consisting of many atoms with degenerate ground state,
there is an exponentially rising number of scattering channels.
Nevertheless, for most problems, such as quantum memories,
the elastic scattering channel is mostly important and can be
calculated once we find the resolvent operator (2.11).

As can be verified, the arbitrary parameter L vanishes when
substituting (2.10) into (2.7) such that the S matrix becomes a
regular and fairly defined physical quantity in our calculation
scheme. Its matrix elements give us the quantum transition
amplitudes for observing the system in particular final states
in the considered quasi-one-dimensional scattering process.
We now turn to the determination of the resolvent operator
via the Feynman diagram method in the perturbation-theory
technique.

C. The resolvent operator

Below we apply a microscopic calculation of the projected
resolvent operator for an atomic system with degenerate
ground state. This approach was developed earlier in [7,37,38]
for light scattering in free space and we adapt it here to the

waveguide configuration. The inverse resolvent matrix can be
expressed in the following form:

˜̂R−1(E) = E − h̄ω0 − �(E), (2.13)

where ω0 is the resonant atomic frequency and �(E) is the self-
energy part. This term is calculated via its relevant expansion
by a set of irreducible diagrams. It is expected to have smooth
dependence on its energy argument and, for near-resonant
scattering, can be reliably approximated by substituting E =
h̄ω0 with the assumption that the ground-state energy Eg = 0
for a degenerate system of the atomic Zeeman sublevels.

The self-energy part can be constructed by keeping the
leading contributions in its diagram expansion. For each ath
atom from the ensemble, there is the following single-particle
self-energy term:

⇒
∑
m

∫
dω

2π
d

μ

n′mdν
mniD

(E)
μν (ra,ra; ω)

× 1

E − h̄ω − Em + i0
≡ �

(a)
n′n(E), (2.14)

where the internal wavy line expresses the causal-type vacuum
Green’s function of the chronologically ordered polarization
components of the field operators,

iD(E)
μν (r,r′; τ ) = 〈

T Êμ(r,t)Êν(r′,t ′)
〉
, (2.15)

and D(E)
μν (r,r′; ω) is its Fourier image defined by Eq. (A1) in

Appendix A. For the sake of generality, here we use covariant
notation for the vector (dipole) and tensor (Green’s function)
components and omit the indication of sum over repeated
tensor indices. In a particular case of Cartesian frame, we
will further simplify our notation and show all the tensor
components via subscribed indices.

Unlike the similar calculations performed in free space, the
Green’s function (2.15) depends here on its spatial arguments
separately and is strongly modified in the presence of the
waveguide; see Appendix A. As an important consequence,
even a single-particle contribution to the self-energy depends
on the atom’s location and has an anisotropic matrix structure
in the basis of its excited states. The respective correction to the
atomic energy structure as well as to its decay parameters has an
anisotropic structure and, in the general case of the degenerate
excited state, cannot be simply reduced to the radiative Lamb
shift and decay constant. The correct renormalization of the
single-particle self-energy part (2.14) concerns both the near-
field self-action as well as the radiative interaction of the atom
with the quantized field.

As explained in [37], in the first leading orders of the
perturbation theory, the double-particle coupling dominates in
the cooperative correction to the self-energy part. The respec-
tive contribution is given by the sum of two diagrams where
the excitation transfer induced by the dipole-type interaction
(2.5) has different time ordering. The time-ordered transfer
of a single optical excitation from an atom a to an atom b is
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described by the following diagram:

⇒
∫

dω

2π
d

μ

n′mdν
m′niD

(E)
μν (rb,ra; ω)

× 1

E − h̄ω − Em − Em′ + i0
≡ �

(ab+)
m′n′;nm(E), (2.16)

and the time-antiordered transfer by the complementary dia-
gram

⇒
∫

dω

2π
d

μ

n′mdν
m′niD

(E)
μν (rb,ra; ω)

× 1

E + h̄ω − En − En′ + i0
≡ �

(ab−)
m′n′;nm(E). (2.17)

The vector components of the dipole matrix elements dν
m′n and

d
μ

n′m are related with atoms a and b, respectively. In the pole
approximation E ≈ En = h̄ω0, the δ-function singularities
dominate in the sum of spectral integrals (2.16) and (2.17)
and the sum of both terms gives

�
(ab)
m′n′;nm(E) ≈ �

(ab+)
m′n′;nm(h̄ω0) + �

(ab−)
m′n′;nm(h̄ω0)

= 1

h̄
d

μ

n′mdν
m′n D(E)

μν (rb,ra; ω0). (2.18)

The derived expression has a clear physical meaning. The
real component of the double-particle contribution to the self-
energy part reproduces both the static interaction between two
proximal dipoles and radiative correction to the quasi-energy
structure for the distant dipoles. Its imaginary component is
responsible for the cooperative dynamics of the excitation
decay in the entire radiation process. For long distances, when
the atomic dipoles are separated by the radiation zone, this
latter term describes radiation interference between any pair of
two distant atoms, which weakly reduces with the interatomic
separation for interaction via external field modes. But for
a collection of atoms arrayed along the waveguide, there
is always strong cooperative interaction via the evanescent
field of the fundamental waveguide mode (see Appendix
A). Thus, in the considered quasi-one-dimensional scattering,
the cooperative effects become extremely important and the
scattering process becomes strongly dependent on a particular
configuration of the atomic array.

III. RESULTS: SCATTERING FROM A
NANOFIBER-TRAPPED ATOMIC ARRAY

In this section, we present the results of our numerical
simulations for light scattering from an array of atoms trapped

near a nanofiber. The geometry is shown in Fig. 1. The atoms
have two energy levels with degenerate Zeeman structure
of the ground state. We consider an array of -configured
atoms with the minimal accessible number of quantum states,
i.e., with angular momentum F0 = 1 in the ground state and
F = 0 in the excited state. Thus we further associate the
quantum indices m ≡ F0,M0 and n ≡ F,M = 0,0, where M0

and M are the Zeeman projections of the atomic spin angular
momentum of the ground and excited states, respectively. Such
an energy and angular momentum configuration exists as a
closed transition in the hyperfine manifold of 87Rb and we use
the spectral parameters of a rubidium atom in our estimates.
We assume the initial collective state of atoms as spin oriented
along the waveguide direction such that all the atoms populate
only one Zeeman sublevel, F0 = 1,M0 = 1, which is relevant
for the realization of quantum interfaces based on atomic
systems.

A. The waveguide parameters

In our calculations, we consider a subwavelength nanofiber
with radius a and dielectric constant ε. The solution of the ho-
mogeneous Maxwell equations can be obtained by factorizing
the mode functions of the waveguide in cylindrical coordinates
as specified by the first line in Eq. (A6) (see [48] for derivation
details). For the fundamental HE11 mode, its components can
be superposed in the set of three basic functions, Eρ(ρ), Eφ(ρ),
and Ez(ρ), which in turn are compiled by Bessel functions of
a different type (see Appendix B).

In cylindrical coordinates, the mode components, specified
by the first line in Eq. (A6), are given by

E(±1k)
ρ (ρ) = Eρ(ρ), E

(±1k)
φ (ρ) = ±Eφ(ρ),

E(±1k)
z (ρ) = Ez(ρ), (3.1)

and, in a Cartesian frame, the mode components, specified by
the second line in Eq. (A6), are given by

E(±1k)
x (ρ,φ) = Eρ(ρ) − iEφ(ρ)

2
√

2π
+ Eρ(ρ) + iEφ(ρ)

2
√

2π
e±2iφ,

E(±1k)
y (ρ,φ) = ± iEρ(ρ) + Eφ(ρ)

2
√

2π
∓ iEρ(ρ) − Eφ(ρ)

2
√

2π
e±2iφ,

E(±1k)
z (ρ,φ) = Ez(ρ)√

2π
e±iφ. (3.2)

For a single-mode waveguide with a � k−1 and with the refrac-
tion index n = √

ε → 1, the solution approaches to Eρ(ρ) →
−iEφ(ρ) with vanishing longitudinal component Ez(ρ) → 0
such that the fundamental mode becomes independent of the
azimuthal angle φ and can be reliably approximated by a
Gaussian fundamental mode propagating in free space. In
this paraxial-type approximation, the two degenerate modes
with σ = ±1 transform to two orthogonal right-handed and
left-handed polarized Gaussian modes, respectively. How-
ever, in a more realistic situation, as considered here, with
a � k−1 but n � 1, all the components are competitive and
all of them mediate the excitation process in the atomic
system.
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FIG. 2. Functions −iEρ(ρ) (dashed blue line), −Eφ(ρ) (green
line), and Ez(ρ) (red line, lower in the graphs) contributing to the
waveguide modes (3.1) and (3.2) for a = 200 nm and for vacuum
wavelength λ0 = 780 nm (rubidium). The vertical shaded area (dash-
dotted bounded) indicates the waveguide. The upper panel displays
the mode structure for silica with refraction index n = 1.45 and the
lower panel relates to a dielectric medium with n = 1.1. For this lower
panel, we show a Gaussian fit of the fundamental mode (dash-dotted
line).

This important property of a nanofiber is illustrated by the
plots shown in Fig. 2. For a nanofiber with a = 200 nm and
for the mode frequency taken at the rubidium wavelength λ0 =
780 nm, we plot three functions −iEρ(ρ), −Eφ(ρ), and Ez(ρ),
which can be set as real and which were calculated for two
different refraction indices, n = 1.45 (silica) and n = 1.1 (to
follow the tendency to the paraxial asymptotic). For the latter
case, we additionally show the Gaussian fit to the HE11 mode to
follow how it reproduces the tail asymptote of the evanescent
field outside the fiber.

B. Single-atom scattering

For a single atom with a nondegenerate upper state, its self-
energy part (2.14) can be expressed as

�(E,r)|E=h̄ω0
= h̄�(r) − ih̄

2
γ (r), (3.3)

where we omitted unnecessary specification by quantum index
n ≡ (F = 0,M = 0) but parameterized the self-energy by the
additional argument r that indicates the atom’s position. The
real part �(r) is diverging and should be incorporated into
the physical energy of the atom. The infinite energy shift is

associated with both the dipole self-action and the radiation
Lamb shift (incorrectly described in the dipole gauge), which
can be safely renormalized [7]. Nevertheless, beyond its
infinite part, �(r) contains a finite and important correction
to the energy shift induced by the dipole coupling with the
waveguide. Here we avoid the nontrivial part of the calculation
of this correction and will further assume that all the atomic
dipoles are set in similar conditions such that the unknown
quantity �(r) can be associated with an energy shift identical
for all dipoles.

According to the expansion of the Green’s function in terms
of contributions of the guided and external modes [see Eq. (A9)
in Appendix A], the radiation decay rate γ (r) can be similarly
expanded as

γ (r) = − 2

h̄2 d2
0 Im

[
D(E)

μμ (r,r; ω0)
] = γ (wg)(r) + γ (ext)(r),

(3.4)

with

γ (wg)(r) = 4ω0

h̄vg

d2
0 [|Eρ(ρ)|2 + |Eφ(ρ)|2 + |Ez(ρ)|2],

(3.5)
γ (ext)(r) = − 2

h̄2 d2
0 Im

[
D(ext)

μμ (r,r; ω0)
]
,

where d0 denotes modulus of the dipole matrix element, which
is the same for all optical transitions in the considered case,
and we conventionally assume the sum over the repeated tensor
index μ = x,y,z. Because of the axial symmetry, the decay rate
depends only on the distance ρ of the atom from the z axis. The
waveguide contribution γ (wg)(r) is a result of exact substitution
of the respective contribution to the Green’s function, given by
Eq. (A10). By approximating D(ext) with (A16) and (A17), we
can estimate the contribution of the external modes γ (ext)(r) as
the following correction to the natural decay constant γ :

γ (ext)(r) ∼ γ − 2ω0

h̄c
d2

0

{|Eρ(ρ)|2 + |Eφ(ρ)|2

+ 2Re
[
iEρ(ρ)E∗

φ(ρ)
]}

. (3.6)

As commented in Appendix A, the second term eliminates
spontaneous emission into those vacuum modes, which in the
paraxial approach coincide with the waveguide modes.

In Fig. 3, we show the results of our numerical simulations
for the rate of spontaneous decayγ (ρ) as a function of the radial
position of the atom from the surface. The calculations, based
on Eqs. (3.5) and (3.6), are performed for silica, with mode
functions shown in the upper plot of Fig. 2, and compared with
the exact result calculated via Fermi’s golden rule where the
complete set of the external modes is kept [18,49]. As can be
seen from the plotted graphs, the highest deviation is observed
when the atom is located near the fiber surface. That indicates a
significant contribution from the process of recurrent scattering
to the Green’s function, which can be recovered via iterative
solution of the scattering equation (A12) in Appendix A.
Nevertheless, at the distance comparable with the waveguide
radius a, the exact result is relevantly reproduced by estimate
(3.6). It is noteworthy to point out that at the intermediate
distances, where ρ − a ∼ a, the simple sum of the natural
γ with the waveguide contribution overestimates γ (ρ) and
should be corrected as suggested by Eq. (3.6).
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FIG. 3. Spontaneous decay rate γ (ρ) of a rubidium atom located
near the waveguide as a function of its distance ρ − a to the surface:
contribution of the fundamental mode (blue, lower curve); sum of
contributions of the fundamental mode and natural decay γ (black,
dash-dotted curve); calculations based on Eqs. (3.4) and (3.5) (green
dashed curve); and exact result (red curve). The vertical shaded
area (dash-dotted bounded) indicates the waveguide. The waveguide
parameters are the same as in the upper plot of Fig. 2.

The obtained parameters contribute to the resolvent operator
and S matrix as explained in Sec. II. The light scattering
in a quasi-one-dimensional geometry can be described by
coefficients of transmission T , reflection R, and losses L,
which are, respectively, given by

T = T (ω) =
∑

i ′,k′>0

|Si ′i |2,

R = R(ω) =
∑

i ′,k′<0

|Si ′i |2, (3.7)

L = L(ω) = 1 − R(ω) − T (ω),

where i = {σ = −1,k; M0 = +1} and the sum over i ′ =
{σ ′,k′; M ′

0} includes both polarization channels σ ′ = ±1 and
three atomic transitions with M ′

0 = 0,±1. The elastic forward-
and backward-scattering channels are distinguished by the
signs of the longitudinal wave numbers k′ = +k and k′ = −k,
respectively; see Eq. (A6). The wave number of an incident
photon is parameterized by its frequency according to the
dispersion law of the waveguide, k = k(ω). In Fig. 4, we plot
the single-atom transmission and reflection coefficients as a
function of frequency detuning from atomic resonance, � =
ω − ω0, for two different positions of the atom near a nanofiber:
ρ − a = 0.5 a and ρ − a = a. The waveguide parameters are
chosen the same as in the upper plot of Fig. 2. The upper plot of
Fig. 4 shows the result of our calculations with the assumption
that the atom would emit the light into the waveguide mode
only. For such an ideal lossless configuration, the balance
R(ω) + T (ω) = 1 evidently fulfills in all the spectral domain.
For a complete scattering process, the graphs of the lower plot
also indicate a few-percent interaction of the atom with the
evanescent field. The small but not negligible fraction of light is
mostly scattered into external modes and the scattering process
is as strong as the atom is closer to the fiber surface. In the next
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FIG. 4. The transmission T (dashed lines), reflection R (solid
lines), and losses L = 1 − R − T (dash-dotted lines) calculated as
a function of frequency detuning � = ω − ω0 for light scattering
from a single rubidium atom trapped at distances ρ − a = 0.5 a (blue
thin lines) and ρ − a = a (red thick lines). The mode and atomic
decay parameters are the same as in Figs. 2 and 3. The upper panel
provides the spectra for the lossless scattering with light emission
into the waveguide mode only, while the lower plot corresponds to
the complete scattering process.

section, we study the scattering provided by a full chain of
atoms trapped along the waveguide.

C. Light scattering from an atomic array

We consider the scattering process from a collection of
atoms trapped along the waveguide in the geometry shown in
Fig. 1. In the case of several atoms, the scattering problem is
described by the same set of parameters given by Eq. (3.7),
with updated definitions of initial and final states. Initially
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FIG. 5. The transmission T (upper plot) and reflection R (lower
plot) calculated for an array of five ordered rubidium atoms trapped
at distances ρ − a = 0.5 a (blue thin lines) and ρ − a = a (red thick
lines). The atoms are separated by a distance d = π/k = λwg/2.
For ρ − a = 0.5 a, we additionally indicate the partial contributions
of Rayleigh scattering channels with preserving mode polarization
(dotted line) and with keeping both the polarization components of
the outgoing light (dashed line). The solid curves show the total
contribution including Raman scattering channels. Other parameters
are the same as in Fig. 4.

our system is prepared in a spin-oriented collective state such
that i = {σ = −1,k; M0 = +1(all atoms)} but the final state

can be any of i ′ = {σ ′,k′; {M (a)′
0 }N

a=1}, where each of the N

atoms can be redistributed onto an arbitrary Zeeman sublevel
with M

(a)′
0 = 0,±1. The dimension of the Hilbert space for the

resolvent operator as well as the number of scattering channels
exponentially rises up with the number of atoms. However, as
confirmed by our numerical simulations, for an array consisting
of a relatively small number of atoms, the Rayleigh channel
makes a dominant contribution to the scattering process. The
contribution of the Raman process can be reliably estimated
by keeping in the output channel only a single spin flip equally
shared among all atoms of the ensemble.

1. Ordered atomic array

First we simulate an ordered array of atoms. Figure 5
provides the parameters of the scattering process calculated for
a system of five atoms with a fixed longitudinal separation, d =
π/k = λwg/2 [half of the mode wavelength; see Eq. (A6)], as

shown in Fig. 1. Similarly to the single-atom case, the array is
considered as located at two distances ρ − a = 0.5 a; a from
the fiber surface. For the shortest distance, we additionally
indicate the partial contributions of the Rayleigh scattering
channel, which leaves atoms at the initial Zeeman state, but
either preserves mode polarization or can transfer the outgoing
light into an orthogonal polarization mode. As it can be seen,
the Rayleigh contribution dominates in the entire scattering
process. As pointed out above, the Raman scattering mainly
results from a single spin flip, shared among all atoms of
the ensemble, such that most of the atoms preserve their
initial population of the F0 = 1,M0 = 1 state. This can be
explained by approximate azimuthal symmetry of the complete
system (photon and atoms) in respect to collinear geometry of
the forward scattering. The symmetry provides conservation
for the total angular momentum such that the spin angular
momentum transfer physically implies the mechanism of spin
exchange between the photon and atomic spin subsystem
in the Raman process, which just results in a single spin
flip. It is also noteworthy to point out that for the Rayleigh
channel, the scattering into the orthogonal polarization mode,
i.e., into σ ′ = +1 for forward or σ ′ = −1 for backward
directions, is possible but quite small for both the transmission
and reflection. Such scattering channel would be completely
forbidden in the paraxial approach. For the considered small
collection of atoms, the reflection is still weak and the losses
associated with incoherent scattering can be mainly estimated
by deviation of the transmission coefficient from the level of
ideal transparency.

The transmission T (ω) and the reflection R(ω) spectra
from the atomic array now demonstrate a clear signature
of cooperativity in the scattering process. By comparing the
spectral dependencies of Figs. 4 and 5, we can see that the
incoherent losses are enhanced by the factor of N = 5 in
accordance with the natural tendency to the Beer-Lambert law.
However, the reflection exhibits much stronger enhancement
roughly scaled by a factor of N2 = 25 and justifies the effect
of coherent Bragg-type reflection. Such scaling is valid only
for a small number of scatterers and far from the saturation
limit. In the case of a mesoscopic system, the enhancement
from an atomic array consisting of many atoms, showing strong
reflection and the effect of one-dimensional atomic mirror, has
been recently observed [30,31]. Let us emphasize that in our
approach, this observation rigorously results from the ab initio
calculation of the scattering process, which is based on the
resolvent operator and the S-matrix formalism. Interpretation
of the Bragg reflection via a semiclassical approach and the
transfer matrix formalism can be found in the above references.

All of the spectral dependencies are redshifted from the
atomic resonance and from the single-atom spectra presented
in Fig. 4. This is a consequence of the short-range static inter-
action of atomic dipoles and is a precursor of the well-known
Lorentz-Lorenz effect existing in infinite, homogeneous, and
dense dielectric media. This type of interaction is naturally
incorporated into our calculation scheme, as explained in the
previous section and detailed in Appendix A. Due to the
translational symmetry in the lattice-type and ordered atomic
configuration, all of the presented spectra have Lorentzian-
shaped monotonic profiles. Such a smoothed spectral behavior
would be dramatically changed once we introduce disorder in
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FIG. 6. Reflection and transmission spectra as in Fig. 5, but here
for a particular random configuration of the atoms in a disordered
array.

the atomic distribution, such as delocalization of the trapping
potential wells due to finite temperature.

2. Disordered atomic array

Figure 6 presents the modified spectra for the case of
disordered configuration. The atoms have the same average
separation,d ∼ π/k = λwg/2, but are randomly and uniformly
distributed along the chain. The spectral dependencies, plotted
for a particular configuration, become quite sensitive to its
variation because of internal correlations in the entire system.
The cooperative effects are revealed in a different way and
the scattering process is generally weaker. This is clearly
seen in the backward-scattering channel whose outcome is an
order of magnitude smaller than in the case of ordered array,
and is negligible when compared with the incoherent losses.
Another important feature of the scattering process is the
complicated structure of the transmission spectra where several
local minima and maxima appear. This is a signature of a
microcavity structure created by a disordered but cooperatively
organized system composed of atomic scatterers in a one-
dimensional configuration [47]. In the case of disorder, the co-
operativity tends to an Anderson-type localization mechanism
that suppresses the scattering process in the one-dimensional
geometry.

It is important to point out that such a configuration-
sensitive interference for an impinging photon scattered from
either ordered or disordered atomic chains has here a rigorous

microscopic description based on the structure of the resolvent
operator of the system Hamiltonian (2.11). Indeed, a single-
photon state of the electromagnetic field is an intrinsically
quantum microscopic object, which has no phase, is parameter-
ized by a negative-valued Wigner function in its phase space,
and cannot be fairly introduced in classical optics. Although
the empirical description of the process in terms of the classical
wave scattering (i.e., in terms of scattering of a weak coherent
light) with classical interpretation of interference paths may
give a realistic estimate of the output transmission and reflec-
tion spectra, it should be provided by the phenomenologically
defined elementary scattering parameters, namely, by a single-
atom decay constant and scattering amplitude. In this sense, the
performed calculations emphasize that the resolvent operator
(2.11), transformed to its diagonal form, generates the set of
unstable Dicke-type excited quantum entangled states, which
have strong internal and configuration-sensitive correlations,
and which respond to the driving photon as one complex
quantum system. The parameters of the system are rigorously
defined by its self-energy part (effective Hamiltonian), intro-
duced in Sec. II C. The microscopically calculated resolvent
operator correctly reproduces the complicated dynamics of the
scattering process and its sensitivity to variation of the external
conditions.

IV. CONCLUSION

In this paper, we have developed the principles of quan-
tum scattering theory toward the microscopic description of
cooperative light scattering from an array of atoms trapped
near a subwavelength dielectric waveguide. The developed
approach is entirely applicable for a single-photon scattering in
a quasi-one-dimensional geometry from atoms having multi-
level and degenerate energy structure. The basic mathematical
attributes of the scattering process, namely the S matrix and
resolvent operator, are linked to the transmission and reflec-
tion coefficients characterizing the propagation of the guided
photon through the atomic chain. The crucial elements of the
performed calculation scheme are the self-energy part and the
electric-field Green’s function and both are strongly affected
by the presence of the waveguide. In the case of a nanofiber
that supports a single fundamental mode, these functions can
be analytically constructed within certain approximations as
we have described.

In the context of a quantum interface and coherent control of
the signal light, atomic systems with a degenerate ground state
are especially interesting. For such systems, the dimension
of the Hilbert subspace of the quantum scattering equations
rises exponentially with the number of atoms. Therefore, in the
present study, we have restricted our numerical simulations to
a configuration of five -configured atoms with the minimal
accessible number of quantum states, i.e., with angular mo-
mentum F0 = 1 in the ground state and F = 0 in the excited
state. For this case, we have provided an important illustration
that includes not only Rayleigh but also Raman channels in the
microscopic description of the cooperative scattering process
in the correct vector model by keeping the complete angular
momentum structure of the guided light.

The atomic scatterers have been considered as distributed
in either ordered or disordered arrays, and the theory predicts
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that the parameters of the scattering process strongly depend
on the distribution type. Our numerical simulations show that
in the case of an atomic chain structured as a one-dimensional
lattice with a period of half wavelength of the guided mode,
there is a significant enhancement of the backward scattering
and light reflection. Importantly, this clear manifestation of
the Bragg diffraction in the scattering process is obtained
here as result of ab initio description via the calculation of
the resolvent operator and can be associated with a specific
periodic entangled structure of its eigenstates created by
an optical excitation. In the alternative situation where the
atoms are distributed randomly with random phase-matching
conditions for an optical excitation shared among the atoms,
we have observed strong dependence of the forward scattering
and light transmission on a particular atomic configuration. The
transmission spectrum has a nonmonotonic profile with several
configuration-sensitive maxima and minima, which indicates
a certain precursor of the Anderson-type localization mech-
anism in the conditions of quasi-one-dimensional scattering
geometry.

The developed approach can be further generalized and
applicable for the description of various light-matter interface
protocols developed in ensembles consisting of a macroscopic
number of atoms. Potentially this can be done because of
the convenient approximate form of the electric-field Green’s
function, which we have found in the paper. The main difficulty
is in an exponentially uprising dimension of the Hilbert space in
the case of a many-particle problem. But this difficulty could
be overcome by involving mainly the proximate dipoles in
the calculation of the self-energy part, similarly to how it was
demonstrated for atomic systems in free space; see [7,38].
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APPENDIX A: THE ELECTRIC-FIELD GREEN’S
FUNCTION NEAR A SUBWAVELENGTH

DIELECTRIC WAVEGUIDE

In this appendix, we consider how the microscopic Green’s
function of the electric field is modified in the presence of a
subwavelength dielectric waveguide. The waveguide, designed
as a tiny nanoscale optical fiber (“nanofiber”) produced from a
transparent dielectric medium (silica), can support propagation
of only one (confined in the transverse direction) fundamental
mode, conventionally named the HE11 mode. We aim to find
the relevant correction to the microscopic Green’s function
outside the nanofiber, which is associated with the modified
structure of the field’s modes.

1. Basic links with macroscopic theory

As proven in statistical physics (see [50]), the causal-
type electric-field Green’s function considered in a spatial
region nearby a macroscopic object can be expressed by
the retarded-type fundamental solution of the macroscopic
Maxwell equation,

D(E)
μν (r,r′; ω) = −i

∫ ∞

−∞
dτ eiωτ 〈T Eμ(r,t) Eν(r′,t ′)〉∣∣

τ=t−t ′

= ω2

c2
D(R)

μν (r,r′; |ω|). (A1)

Here the integrand under the Fourier transform, introduced by
Eq. (2.15) as an element of the diagram expansion of the self-
energy part, performs the expectation value of the time-ordered
product between the exact field operators in the Heisenberg
representation, “dressed” by the interaction with the object.
The second line identifies this quantity as the retarded-type
fundamental solution of the macroscopic Maxwell equation
(photon propagator in a medium [50]),

�D(R)
μν (r,r′; ω) − ∂2

∂xμ∂xα

D(R)
αν (r,r′; ω)

+ ω2

c2
[1 + 4πχ (r)]D(R)

μν (r,r′; ω) = 4πh̄ δμνδ(r − r′),

(A2)

where χ (r) is the spatially dependent dielectric susceptibility
of the medium. In the vacuum case, when χ (r) → 0, expres-
sions (A1) and (A2) reproduce the direct relation between
electric-field Green’s function and photon propagator in free
space. But in the general case, they allow us to obtain the
correction to the Green’s function due to a nearby macroscopic
object such as a dielectric waveguide. By neglecting dispersion,
as we can assume if ω is varied in a narrow spectral domain
near the reference atomic resonance frequency ω0, Eq. (A2)
can be rewritten directly for the positive frequency component
of the causal-type Green’s function D(E) just by adding the
factor ω2/c2 in its right-hand side.

In this case, and for a transparent medium, the standard
quantization scheme in free space can be straightforwardly
generalized by tracking boundary conditions on the object
surface. Expansions (2.8) and (2.9) in the main text construct
the field components as Schrödinger operators reexpanded in
the complete set of modified basic operators for the creation
and annihilation of a photon either in the modes confined with
the waveguide or in the delocalized external modes. The ex-
pectation value of the time-ordered product for such modified
field operators in the Heisenberg representation automatically
reproduces the basic relations (A1) and (A2).

The obtained differential equation for the causal-type
Green’s function can be further transformed to the following
integral form:

D(E)
μν (r,r′; ω)=D(0)

μν(r − r′; ω)

−

h̄

∫
d3r ′′ D(0)

μα(r−r′′; ω)χ (r′′)D(E)
αν (r′′,r′; ω),

(A3)
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where the Green’s function of the freely propagating field (not
modified by the waveguide) is given by

D(0)
μν(R; ω) = −i

∫ ∞

−∞
dτ eiωτ 〈T Eμ(r,t) Eν(r′,t ′)〉(0)

∣∣∣ τ = t − t ′
R = r − r′

= −h̄
|ω|3
c3

{
i
2

3
h

(1)
0

( |ω|
c

R

)
δμν

+
[
XμXν

R2
− 1

3
δμν

]
ih

(1)
2

( |ω|
c

R

)}
, (A4)

where the superscript zero index emphasizes that the averaging
is done in the basis of the plane-wave modes. Here, h

(1)
L (. . .)

with L = 0,2 are the spherical Hankel functions of the first
kind. In the integral equation (A3), we have added an auxiliary
parameter  → 1 for resolving a possible conflict with the
Fredholm alternative.

Indeed,  = 1 is an eigenvalue of the integral operator in
Eq. (A3) and the respective eigenfunction (integrable in the
transverse plane) is given by the solution of the homogeneous
wave equation,

�E(s)
μ (r) − ∂2

∂xμ∂xα

E(s)
α (r) + ω2

c2
[1 + 4πχ (r)]E(s)

μ (r) = 0,

(A5)

as can be straightforwardly verified by applying the wave
operator to Eq. (A3). This is a signature of a resonance
contribution of the waveguide modes, determined as solutions
(localized in the transverse plane) of Eq. (A5), to the Green’s
function.

If χ (r) ∼ const inside the fiber, then due to azimuthal and
translational symmetry the solution can be factorized in the
following product:

E(s)
q (r) = E(σk)

q (ρ)
1√

2πL
eiσφ eikz (Cylindric),

(A6)
E(s)

μ (r) = E(σk)
μ (ρ,φ)

1√
L

eikz (Cartesian),

where the longitudinal wave number k and azimuthal quantum
number σ = ±1 are the mode parameters incorporated in
the entire mode index, s = σ,k. The solution is obtained
in cylindrical coordinates r → ρ,φ,z, but with the vector
projection defined in respect to either cylindrical basis with
q = ρ,φ,z (first line) or to Cartesian frame with μ = x,y,z

(second line). For the sake of convenience [see normalization
condition(A8) below], we pose a longitudinal wave inside a
certain quantization segment of length L with periodic bound-
ary conditions and consider k = 2π/L × (any integer) as a
quasidiscrete variable. The mode frequency and longitudinal
wave number are connected via the dispersion relation ω =
ωs ≡ ωk , which depends on the waveguide parameters, such
that each particular frequency ω determines only one specific
wave number, k = k(ω).

The next observation is that there is a continuum family of
eigenfunctions of integral operator contributing to Eq. (A3),
which has formed (A6) and corresponds to a family of
eigenvalues  = k ∼ 1 varied with k. This can be justified
by the fact that with slightly varying , we can change the
dielectric susceptibility of the waveguide, χ (r) → χ (r), and

can always fit it to the value, which provides a homogeneous
solution of such modified Eq. (A5) in form (A6) for arbitrary k.

For the interaction with atoms, the evanescent field fre-
quency ω is expected to be quite close to the atomic frequency
ω0. The possible variations of k from k(ω) can be scaled by
variation of frequency detuning as �ω/c, where �ω � ω,ω0

by many orders of magnitude. In this case, the eigenfunctions
of the integral operator for any acceptable k have eigenvalue k

very close to “one” and, being considered on a macroscopic
scale of a finite waveguide, are practically indistinguishable
from the waveguide modes (A6) for the same k. Excitation
of these quasiresonant waveguide modes makes a consider-
able correction to the electric-field Green’s function near the
nanofiber.

2. Contribution of the waveguide modes

Consider Eq. (A2) for the causal-type Green’s function and
in the case when both the spatial arguments r and r′ are located
outside the fiber,

�D(E)
μν (r,r′; ω) − ∂2

∂xμ∂xα

D(E)
αν (r,r′; ω) + ω2

c2
D(E)

μν (r,r′; ω)

= 4πh̄
ω2

c2
δμν δ(r − r′). (A7)

Let us specify the waveguide modes, defined by Eqs. (A5) and
(A6), by the following normalization condition:∫

d3r ε(r) E(s ′)∗(r) · E(s)(r)

≡
∫

d3r D(s ′)∗(r) · E(s)(r) = δs ′s , (A8)

where ε(r) = 1 + 4πχ (r) is the dielectric permittivity and
D(s ′)(r) = ε(r) E(s ′)(r) is the s ′ mode of the displacement field.
As explained above, the integral over the z variable is bounded
by the quantization segment L → ∞ and implies periodic
boundary conditions and quasidiscrete wave number k.

The formal solution of Eq. (A7) can be constructed via
an expansion of the Green’s function in the series of the
complete basis set for all the cylindrical modes, i.e., given by
the waveguide modes (A6) and by the infinite set of the external
delocalized modes. Thus the Green’s function is given by the
sum of two contributions,

D(E)
μν (r,r′; ω) = D(wg)

μν (r,r′; ω) + D(ext)
μν (r,r′; ω). (A9)

The first term specifies the contribution of the waveguide
modes and outside the fiber, where the modes of displacement
and electric fields coincide, and is given by

D(wg)
μν (r,r′; ω) =

∑
s

4πh̄ω2

ω2 − ω2
s + i0

E(s)
μ (r) E(s)∗

ν (r′). (A10)

The contribution of the external modes, denoted by the second
term in (A9), can be similarly obtained, but, by keeping all the
modes, it makes it a quite cumbersome and hardly applicable
result for evaluating the cooperative resolvent operator in a
many-particle problem. Nevertheless, as we show below, in the
case of a single-mode nanofiber, we can modify the integral
equation (A3) to another form, which suggests convenient
approximation for D(ext).
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3. Contribution of the external modes

In expansions (A9) and (A10), the spatial argument r can be
taken even inside the fiber by accepting the Green’s function
as a fundamental solution of the wave equation in its general
form (A2). Then, due to the orthogonality of the basis functions
associated with the waveguide, we can select the contribution
of external modes via the following identity:

D(ext)
μν (r,r′; ω) = D(E)

μν (r,r′; ω) −
∑

s

E(s)
μ (r)

×
∫

d3r ′′ D(s)∗
α (r′′)D(E)

αν (r′′,r′; ω). (A11)

The second term actually subtracts the contribution (A10), per-
formed here in the projected form. If the waveguide is excited
on frequency ω, it would be effectively responding on those
modes whose frequencies ωs ≡ ωk are close to ω. Having also
in mind that the frequency ω is quasiresonant to the reference
atomic frequency ω0, we can expect that only a limited number
of near-resonant modes with ωk ∼ ω ∼ ω0 would make a
meaningful contribution in (A11). As was pointed out above,
these modes, considered on a macroscopic scale, of the finite
waveguide approximately coincide with the eigenfunctions of
the integral operator in Eq. (A3) with eigenvalue k ∼ 1.

By substituting expansion (A11) into the integral equation
(A3) and by taking  = 1, it can be transformed to the
following form:

D(ext)
μν (r,r′; ω)≈D(0)

μν(r − r′; ω)

+ 1

h̄

∫
d3r ′′Kμα(r,r′′; ω)D(ext)

αν (r′′,r′; ω), (A12)

with the following modified kernel of the integral operator:

Kμα(r,r′′; ω) = −D(0)
μα(r − r′′; ω)χ (r′′)

−
∑

s

E(s)
μ (r) D(s)∗

α (r′′). (A13)

The sign of “approximately equal” in Eq. (A12) means that here
we have equated the waveguide modes with the eigenfunctions
of the original integral operator (A3) and have neglected the
differences in the eigenvalues such thatk ≈ 1. In this assump-
tion, the integral operator with kernel (A13) eliminates the
waveguide contribution (A10) and, as a consequence, justifies
replacing D(E) → D(ext) in the right-hand side of Eq. (A12).

The inhomogeneous integral equation (A12) fulfills the
resolving conditions of the Fredholm theorem (see Ref. [51])
and its solution for a nanofiber implies rapidly converging
iterative expansion. In the first iteration step, we have

D(ext)
μν (r,r′; ω)≈ D̃(0)

μν(r,r′; ω)

− 1

h̄

∫
d3r ′′D(0)

μα(r−r′′; ω)χ (r′′)D(0)
αν (r′′−r′; ω),

(A14)

where the first term is given by

D̃(0)
μν(r,r′; ω) = D(0)

μν(r − r′; ω) −
∑

s

E(s)
μ (r)

×
∫

d3r ′′ D(s)∗
α (r′′)D(0)

αν (r′′ − r′; ω), (A15)

and coincides with the expansion (A11) with the vacuum
Green’s function substituted in the right-hand side. The second
term in Eq. (A14) gives the contribution of a single scattering
from a spatial inhomogeneity in the dielectric permittivity, i.e.,
gives the simplest perturbative estimate for the reflection from
the waveguide.

The solution of the scattering equation in the integral form
(A12) suggests a realistic estimate of the function D(ext) in
the considered assumptions and simplifications. As a zero
approximation, we can accept

D(ext)
μν (r,r′; ω) ≈ D̃(0)

μν(r,r′; ω), (A16)

whose validity is explained below. For the propagating modes,
the evanescent field typically has transverse scale sufficiently
broader than the radiation wavelength. Then the second term
in Eq. (A15) can be approximately evaluated for points r and
r′ separated by a distance comparable to the wavelength or
shorter, and the complete Green’s function (A9) can be given
in the following closed form:

D(E)
μν (r,r′; ω) ≈ D(wg)

μν (r,r′; ω) + D(0)
μν(r − r′; ω)

−
∑

s

4πh̄ω2

ω2 − c2k2 + i0
E(s)

μ (r) E
(s)∗
⊥ν (r′),

(A17)

where in the last subtracting term E(s)∗
⊥ (r′) denotes the vector

projection of E(s)∗(r′) on the plane transverse to the z axis,
i.e., to the waveguide direction; see Eq. (3.2). It is given by
the leading (in paraxial limit) contributions in the right-hand
side of (3.2) with the azimuthal angular-dependent terms
omitted.

The obtained result has a quite natural physical interpre-
tation. If a pointlike dipole source emits light near a single-
mode waveguide of subwavelength transverse scale, then the
respective fundamental solution of the Maxwell equation has
more or less a similar structure as in the vacuum case. Then, part
of the emitted modes in the paraxial approach coincide with
the waveguide modes, but in the presence of the waveguide
these modes have the dispersion law ωs = ωk �= ck, which
is different from the dispersion relation in free space; this
difference should be taken into consideration. The respective
correction can be seen by comparing the waveguide contri-
bution (A10) with the last term in the expression for the
complete Green’s function (A17). In the paraxial approach,
the subtracted contribution, given by this last term, eliminates
the emission into the vacuum mode coinciding, in paraxial
limit, with the waveguide modes, whose contribution is already
correctly incorporated into Eq. (A10). The approximation,
performed by Eqs. (A16) and (A17), seems sufficient for a
dipole source distant from the fiber on a length comparable
with its transverse scale. Nevertheless, it becomes insufficient
for a dipole located just near the fiber surface since it com-
pletely ignores any corrections associated with the reflection
of the source wave from the fiber. The respective corrections
could be recovered via an iterative solution of Eq. (A12)
and their simplest estimate is given by the second term
in Eq. (A14).
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APPENDIX B: THE WAVEGUIDE MODES

We consider the waveguide-mode equations in the cylin-
drical frame. By substituting Eq. (A6) into Eq. (A5) for the
longitudinal z component for both types of σ = ±1 polariza-
tion modes, we have

∂2

∂ρ2
U (σk)(ρ) + 1

ρ

∂

∂ρ
U (σk)(ρ) +

[
κ2 − σ 2

ρ2

]
U (σk)(ρ) = 0,

(B1)

where κ2 = κ2
in = ε ω2/c2 − k2 > 0 (inside the fiber ρ < a)

or κ2 = κ2
out = ω2/c2 − k2 < 0 (outside the fiber ρ > a), and

U (σk)(ρ) is either the electric-field E(σk)
z (ρ) or magnetic-

field H (σk)
z (ρ) component [expanded similarly to (A6)]. Other

vector components are given by

E(σk)
ρ (ρ) = i

κ2

[
k

∂

∂ρ
E(σk)

z (ρ) + iσω

cρ
H (σk)

z (ρ)

]
,

(B2)

E
(σk)
φ (ρ) = i

κ2

[
iσk

ρ
E(σk)

z (ρ) − ω

c

∂

∂ρ
H (σk)

z (ρ)

]
,

for the electric field, and

H (σk)
ρ (ρ) = i

κ2

[
k

∂

∂ρ
H (σk)

z (ρ) − iσ εω

cρ
E(σk)

z (ρ)

]
,

(B3)

H
(σk)
φ (ρ) = i

κ2

[
iσk

ρ
H (σk)

z (ρ) + εω

c

∂

∂ρ
E(σk)

z (ρ)

]
,

for the magnetic field. These relations are written for arbitrary
ρ such that the dielectric constant should be taken as ε = 1
outside the fiber. The mode equation (B1), considered together
with representations of transverse components (B2) and (B3),
has to be completed by conventional boundary conditions to
the Maxwell equations on the fiber surface. Eventually the
solution can be found in an analytical form as a compilation
of Bessel functions.

We set the basic functions Eρ(ρ), Eφ(ρ), and Ez(ρ) as
the electric-field components for the right-handed rotating
polarization mode with σ = +1; see Eq. (3.1). These functions
can be expressed via the following expansion in the set of the

Bessel and Hankel functions of the first kind (see [48]):

Eρ(ρ) ∝ i k

2κ J1(κa)
[(1 − u)J0(κρ) − (1 + u)J2(κρ)],

Eφ(ρ) ∝ − k

2κ J1(κa)
[(1 − u)J0(κρ) + (1 + u)J2(κρ)],

Ez(ρ) ∝ 1

J1(κa)
J1(κρ), (B4)

with κ = κin as the real quantity for ρ < a, and

Eρ(ρ) ∝ − i k

2κ H
(1)
1 (κa)

[
(1−u)H (1)

0 (κρ)−(1 + u)H (1)
2 (κρ)

]
,

Eφ(ρ) ∝ k

2κ H
(1)
1 (κa)

[
(1 − u)H (1)

0 (κρ) + (1 + u)H (1)
2 (κρ)

]
,

Ez(ρ) ∝ 1

H
(1)
1 (κa)

H
(1)
1 (κρ), (B5)

with κ = κout as the imaginary quantity for ρ > a, where

u = − ω2(ε − 1)

c2 a2κ2
inκ

2
out

[
1

x

d

dx
ln J1(x)

∣∣∣∣
x=κina

− 1

x

d

dx
ln H

(1)
1 (x)

∣∣∣∣
x=κouta

]−1

. (B6)

The mode functions should be normalized in accordance with
Eq. (A8) and the modes obey the dispersion law k = k(ω),
which is given by the solution of the following characteristic
equation:[
−ε

κ2
out

κ2
in

x
d

dx
ln J1(x)

∣∣∣∣
x=κina

+ x
d

dx
ln H

(1)
1 (x)

∣∣∣∣
x=κouta

]

×
[
−κ2

out

κ2
in

x
d

dx
ln J1(x)

∣∣∣∣
x=κina

+ x
d

dx
ln H

(1)
1 (x)

∣∣∣∣
x=κouta

]

= (ε − 1)2ω2k2

c2κ4
in

. (B7)
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