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Raman sideband cooling of a single atom in an optical dipole trap: Toward a theoretical
optimum in a three-dimensional regime
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We clarify the optimal conditions for the protocol of Raman sideband cooling (RSC) of a single atom confined
with a tightly focused far-off-resonant optical dipole trap (optical tweezers). The protocol ultimately pursues
cooling to a three-dimensional ground state of the confining potential. We show that the RSC protocol has
to fulfill a set of critical requirements for the parameters of cooling beams and the excitation geometry to be
effective in a most general three-dimensional configuration and for an atom having initial temperature between
the recoil and the Doppler bounds. We perform a numerical simulation of the Raman passage for an example of
an 85Rb atom taking into account the full level structure and all possible transition channels.
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I. INTRODUCTION

Progress in the physics of cold atomic systems has opened
an intriguing option of optical tweezers, which allows one
to confine a single atom with an isolated microscopic dipole
trap [1,2]. Recent advances of this technique allowed for
near-deterministic loading of single atoms in the microtraps
[3,4] and arrangement of tweezers into lattices of arbitrary
shape with holographic techniques [5]. A unique advantage of
the tweezers technique is the capability of dynamic transport
of trapped single atoms [6,7], which allows one to assemble
regular fully filled arrays of single atoms [8–10]. These atomic
arrays with individual addressing and control of every site
offer marvelous prospects for quantum simulation [11,12]
and computing [13,14]. However, despite significant progress
toward realizing a full set of quantum computing primitives
in the neutral atom arrays [15], the quality of entangling
two-qubit gates is still not very high, even in the best state-
of-the-art implementations [16]. One of the factors having
a detrimental effect on two-qubit gate fidelity is residual
motion of atoms in the trap. Temperatures of ∼30μK com-
monly achieved in tweezers by molasses cooling result in
pronounced Doppler broadening of the Rydberg excitation
lasers and therefore limit the fidelity of two-qubit Rydberg
gates [15,17]. Entangling gates based on local spin-exchange
interactions [18] are even more demanding and ideally require
ground-state cooling for operation. Therefore, development of
methods for cooling single neutral atoms in a microscopic
dipole trap to the ground state of the confining potential is
of essential importance. Fortunately, such methods for tightly
confined particles do exist.

The technique of Raman sideband cooling (RSC) was
originally proposed for ion traps [19–22] and then developed
for cooling of atomic ensembles consisting of neutral atoms
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confined in optical lattices [23–28]. In order to slow the
trapped atom localized by the tweezers, the RSC protocol
reveals a convenient and unique tool to quench its vibrational
motion down to the ground state of the potential well. In
several recent experimental works it was successfully applied
to single neutral atoms in optical tweezers [29–32] and for
preparation of Bose-Einstein condensate [33].

In a typical example of an alkali-metal atom, the protocol
would be effectively applicable once the atom is tightly con-
fined along all three spatial directions, such that the respective
oscillation frequencies are large enough to be resolved by
Raman transitions between the two ground-state hyperfine
sublevels. Then for initially low excited vibrational modes the
cooling protocol can subsequently suppress the oscillations
along each major axis of the trapping potential.

In this paper we intend to analyze the capabilities of
the simultaneous suppression of vibrational motion in all
three oscillator eigenmodes. A tweezer potential usually has
the shape of an ellipsoidal well with two degenerate radial
(transverse) modes and one axial (longitudinal) modes. We
assume that in a typical experimental scenario the microtrap
is originally loaded from an atomic ensemble, prepared in
a magneto-optical trap, and after a stage of molasses cool-
ing still has a relatively high temperature and, as a conse-
quence, a high mean vibrational number v̄ > 1 for each mode.
We are inspired and motivated by impressive experimental
progress in implementation of the RSC protocol for cooling
of an alkali-metal atom in tweezers-type systems in a three-
dimensional regime [29,30,32]. As we show here, in a general
three-dimensional configuration there is a set of nontrivial
requirements for the geometry of cooling beams and for the
external parameters associated with the light pulses providing
the Raman process for simultaneous suppression of all the
oscillator modes.

The paper is organized as follows: In Sec. II we review a
general concept of the RSC protocol, describing it as a quan-
tum process transforming the density matrix from an initially
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thermal distribution down to the system ground state. Here
we show that entanglement between the spin and vibrational
degrees of freedom plays a crucial role for realization of the
protocol in the three-dimensional regime. In Sec. III the main
element of the protocol, i.e., the stimulated Raman passage to
a lower vibrational state, is clarified and optimized. This con-
cerns geometry and requirements to the polarizations of the
cooling beams and their Rabi frequencies, and manipulation
with an external magnetic field. In Sec. IV we illustrate the
practical advantages of the suggested cooling optimization by
our numerical simulations explicitly performed for an 85Rb
atom. In conclusion, we make some final remarks concerning
the applicability of the proposed RSC design to the existing
tweezers systems.

II. BASIC CONCEPT OF THE RSC PROTOCOL

Consider an atom, confined in a dipole trap, as an element
of a canonical thermal ensemble parameterized by tempera-
ture T ≡ β−1. The atom is assumed to be optically pumped
into a specific spin state (Zeeman hyperfine sublevel), which
we denote as |s〉 and will further address as a source state.
Then the initial density matrix of the system is factorized
into a product of a vibrational (thermal-equilibrium) and an
internal spin (pure) parts:

ρ̂ =
∑

vx,vy,vz

exp
{
β
[
F (β ) − εvxvyvz

]}|vx, vy, vz〉〈vx, vy, vz||s〉〈s|,

(2.1)

where F = F (T ) ≡ F (β ) is the free energy and εvxvyvz is the
energy of a harmonic oscillator eigenstate parameterized by
the vibrational quantum numbers vx, vy, vz = 0, 1, 2, . . . for
the x, y, z major axes of the trap. We approximate the trap
potential by an axially symmetric harmonic oscillator well
having an axial frequency �‖ and a radial frequency �⊥ such
that for any stationary vibrational state |vxvyvz〉 its excitation
energy is given by

εvxvyvz = h̄�‖

(
vz + 1

2

)
+ h̄�⊥(vx + vy + 1). (2.2)

The axial symmetry is not such a critical requirement, and
our discussion in its main points can be straightforwardly
generalized for the case of an asymmetric trapping potential.

The central idea of the RSC protocol is to provide a
sequence of stimulated Raman passages which subsequently
lower the vibrational numbers in each mode. Then in the
expansion of the thermal equilibrium density matrix (2.1) we
can select the state,

|s〉 × |0, 0, 0〉 ≡ |Dark〉, (2.3)

which is not affected by the Raman process and is convention-
ally specified as a “dark” state. The small initial population
of this specific state is enhanced step-by-step by repeating
the processes, consisting of the Raman transitions and optical
pumping cycles, returning the spin subsystem back to the
source state. In an ideal scenario it is expected that the atom
would eventually occupy the dark state with 100% probability
and therefore will be loaded into the vibrational ground state.

Let us clarify this idea by tracking the transformation of
the system state at each step of the protocol. An ideal Raman
passage can be expressed as a unitary transfer of a base state
|b〉 = |s〉 |vxvyvz〉, contributing into the initial density matrix
(2.1), onto a specific destination state |d〉 in accordance with
the rule

|b〉 ≡ |s〉 |vx, vy, vz〉
Raman⇒ C

(vxvyvz )
x |tx〉|vx−1, vy, vz〉+C

(vxvyvz )
y |ty〉|vx, vy−1, vz〉

+ C
(vxvyvz )
z |tz〉|vx, vy, vz − 1〉

=
∑

μ=x,y,z

C
(vxvyvz )
μ |tμ〉| . . . , vμ − 1, . . .〉 ≡ |d〉. (2.4)

We assume the Raman transfer to be a lossless dynamical pro-
cess: |C(vxvyvz )

x |2 + |C(vxvyvz )
y |2 + |C(vxvyvz )

z |2 = 1. If one of the
vibrational modes, contributing into the base state, has already
reached the “zero” number then the associated amplitude
factor contributing to the sum in the right-hand side should be
canceled out, i.e., C

(0vyvz )
x → 0, or C(vx0vz )

y → 0, or C
(vxvy0)
z →

0. Thus the expansion (2.4) introduces the transform in the
most general configuration. The contributing target spin states
|tx〉, |ty〉, and |tz〉 are unique for the chosen transition scheme
and energy structure, and depend on the parameters of the
Raman pulse providing such an ideal conversion.

The constructed superposition (2.4) describes an atomic
wave packet considered at the moment of its preparation. Then
at arbitrary time the state becomes time dependent,

|d (t )〉|t>0 ⇒
∑

μ=x,y,z

C
(vxvyvz )
μ |tμ(t )〉 exp[−i�μt]| . . . , vμ− 1, . . .〉,

(2.5)
where �x = �y = �⊥ and �z = �‖, and each spin state
|tμ(t )〉 has its own temporal dynamics.

The next step of the protocol consists of a nonunitary inco-
herent repopulation of the atom back onto the source state,
which can be done with a resonant optical pumping pulse.
The main requirement is that in the optical pumping process
the spin density matrix should be transformed independently
of the vibrational motion of the atom. That can be justified
by the physical arguments based on the Lamb-Dicke effect,
providing that the vibrational motion is not affected by a
sufficiently weak resonant pulse consisting of only few pho-
tons. Then we arrive at the separable density matrix structure
similar to Eq. (2.1) but with the modified part associated with
the vibrational degrees of freedom. Let us think about the
state (2.4) as an entangled state expressed here by its Schmidt
decomposition and consider |tx〉, |ty〉, and |tz〉 to be mutually
orthogonal. If so, then after the optical pumping cycle the state
of the system is reproduced in a factorized form similar to
(2.1) but with a partially enhanced population of the dark state.
The details are clarified in Appendix A.

As shown in Appendix A, after n steps of subsequent
application of Raman and optical pumping cycles the density
matrix is transformed as follows:

ρ̂ (n) = exp{βF (β )}Z (n)(β ) × |0, 0, 0〉〈0, 0, 0| × |s〉〈s|
+ · · · , (2.6)
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where Z (n) denotes the cutoff of the oscillator’s partition sum
containing n excitations and is given by

Z (n)(β ) =
∑

vx, vy, vz

vx + vy + vz � n

exp
[ − βεvxvyvz

] =
∑
ε�εn

gε exp[−βε].

(2.7)

Here gε is the quantum degeneracy of the states |vx, vy, vz〉
with equal energies but different vibrational numbers, ε =
εvxvyvz , where εn is the upper energy bound corresponding to
n = max{vx + vy + vz} excitations of the vibrational modes.
Since

lim
n→∞Z (n)(β ) = exp{−βF (β )}, (2.8)

finally we arrive at

lim
n→∞ ρ̂ (n) = |0, 0, 0〉〈0, 0, 0| × |s〉〈s|, (2.9)

such that the contribution of the other terms indicated by the
ellipses in (2.6), and responsible for a residual depopulation
of the dark state, vanishes with n → ∞. That demonstrates
the internal convergence of the process and the preparation of
the system in the dark state with vanishing contribution of the
excited vibrational modes.

We have constructed the basic transformations of the den-
sity matrix (2.6)–(2.9) under an assumption that Eq. (2.4)
uniquely reveals a Schmidt decomposition of an entangled
state shared between the vibrational and the spin subsystems.
But in a general case with an arbitrary Raman coupling, for
which we only know that it provides a perfect transfer of
the spin and the vibrational state of the atom, the Schmidt
decomposition of the final state could be different from (2.4).
In a most general case one can expect

|s〉 × |vx, vy, vz〉 Raman⇒
∑

q=1,2,3

Cq|tq〉 × |vibq〉, (2.10)

where Cq are the Schmidt coefficients, and the dimension
of the expansion coincides with the number of vibrational
degrees of freedom. Overwise the protocol would access only
to a part of vibrational motion and not provide the three-
dimensional cooling. So the maximal entanglement is a cru-
cial requirement for the protocol, and each of the vibrational
basis states |vibq〉 is given by superposition of three terms
|..., vμ−1, ...〉 with μ = x, y, z. After tracing out the spin state
(optical pumping cycle), the vibrational part of the density
matrix transforms to a mixed state containing the coherent
coupling between different modes. In accordance with (2.5),
the density matrix of the vibrational subsystem would have
off-diagonal elements oscillating in time. Nevertheless, one
can expect that natural dissipation of coherency, associated
with any weak external perturbations of the trap poten-
tial, would soften this problem and reduce the off-diagonal
components, so the basic result, given by Eqs. (2.6)–(2.9)
is still applicable to various other (probably less optimal)
Raman transition schemes. A significant internal-state deco-
herence in optical tweezers has been recently observed in
experiment [31].

FIG. 1. The RSC protocol in a one-dimensional regime: The
stimulated Raman scattering is initiated between the source state |s〉
and the target states |tμ〉 (μ = x, y, z). Each combination of the beam
pairs (the direction of which is arbitrary, shown in the diagram) could
be subsequently redirected along the trap axes and with selecting
the carrier frequencies ω0 and ω j (with j = 1, 2, 3 ⇔ μ = x, y, z)
would provide suppression of the vibrational motion by one quantum
vμ → vμ − 1. This constructs the Raman transfer (the main element
of the RSC protocol) between the base state |b〉 and the destination
state |d〉.

III. POSSIBLE SCENARIOS OF THE RAMAN PASSAGE

In this section we consider the possible schemes of the
Raman passage suppressing the vibrational motion, which is
formally expressed by Eq. (2.4). We show how this key ele-
ment of the entire RSC protocol could be optimized depending
on the thermal kinetic energy (temperature) with which the
atom is initially loaded in the trap.

A. The RSC for low-energy excitation of the oscillator’s modes

Let us first consider the situation when the dipole trap
is so tight in the transverse direction that the trap oscillator
is weakly excited and the mean radial vibrational numbers
v̄x ∼ v̄y ∼ 1. For the axial mode we assume v̄z > 1, but not
extremely high. That physically corresponds to the condition
that the atom is loaded into the tweezers with the temperature
T ∼ �⊥. For this particular case the RSC protocol can be
separately organized for each of the vibrational degrees of
freedom. A possible example of a transition scheme and an
excitation geometry is shown in Fig. 1, where cooling is
provided by two counterpropagating collinear beams with
orthogonal circular polarizations.

The combination of two beams with Rabi frequencies �(0)

and �( j) with j = 1, 2, 3 subsequently directed along the trap
axes and tuned to the respective spin-vibrational transition
leads to the �-type resonant interaction between the base state
|b〉 and the destination state |d〉. For simplicity we assume the
detunings from the upper hyperfine manifold in the diagram
of Fig. 1 to be equal for all the optical fields participating
in the process such that �(0) = �( j) ≡ �. Without sponta-
neous losses the process can be reduced to the primitive time
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dynamics of the probability amplitudes cb(t ) and cd (t ) associ-
ated with the populations of these states:

cb(τ ) = cos

[
1

2

∫ τ

0
�(t )dt

]

cd (τ ) ∼ sin

[
1

2

∫ τ

0
�(t )dt

]
, (3.1)

where �(t ) is an effective Rabi frequency of the Raman
process, and in the second line we omitted an unimportant
phase factor. This indicates the well-known concept of a
π -pulse with

∫ τ

0 �(t )dt = π as a necessary and sufficient
condition to convert the atom from the level |b〉 to the level |d〉
in the two-level problem. For the cooling beams far detuned
from the atomic resonance the condition can be fulfilled for
sufficiently strong and long light pulses.

If after the optical pumping cycle the atom was safely
repopulated back onto the |s〉 state and other disturbances,
such as those associated with the trap imperfection and cross-
interaction of the vibrational modes, did not affect the entire
dynamics, the atom would eventually occupy the dark state
(2.3) for a particular vibrational mode after several protocol
repetitions. The process can be separately organized for each
vibrational degree of freedom and will eventually cool the
atom onto the dark state. But even for such a straightforward
scheme it can be pointed out that at each step of the protocol
the constructed �-type resonance would be quite sensitive
to the Zeeman energy shifts in the external magnetic field,
as well as to its radiation dressing (light shifts), induced by
the driving coherent fields. The importance of these effects in
a more complicated three-dimensional geometry is clarified
below.

B. Raman passage in a three-dimensional regime

Consider now the main scenario when the trap oscillator
is excited in all three directions so that v̄x, v̄y, v̄z > 1 and
the vibrational numbers can be relatively high. In such a
situation even a rather weak cross-interaction between the
vibrational modes can wash out the advantage of simplicity
for the mechanism of separated cooling of the trap modes
described above. Some experimental protocols [29,30,32,34]
have pointed out certain advantages from control over all
degrees of freedom of a trapped atom. As we show below,
a more optimal strategy could be proposed to organize the
simultaneous suppression of the vibrational motion in all three
directions.

1. Excitation geometry and transition scheme

For three-dimensional cooling we have to generalize the
scheme shown in the diagram of Fig. 1 up to three si-
multaneously acting control components with independent
access for linear momentum transfer to each of the vi-
brational degrees of freedom. As shown in Fig. 2, this
can be done if the wave vectors of the control beams k1,
k2, and k3 form isosceles triangles with the wave vec-
tor of the depopulating beam k0. In this excitation ge-
ometry the plane angles ∠(k0 − k1, k0) = ∠(k0 − k2, k0) =
∠(k0 − k3, k0) = arccos(1/

√
3) = 54.70 and three recoil

wave vectors k1 − k0, k2 − k0, and k3 − k0 become mutually

FIG. 2. Geometry of the light beams providing simultaneous
quenching of the vibrational motion in the three-dimensional regime.
Upper part of the figure shows the trap location in the tweezers
(elliptic spot) with respect to the confining beam (red shining area),
and the lower part specifies the geometry of the cooling process. The
four light beams are directed along the bisectrices of the main and
three adjoining octants of the trap frame. The depopulating beam
with the wave vector k0 in combination with each of the control
beams k1, k2, and k3 produces the recoil linear momenta hitting the
atom along the major trap axes. This is clarified by an example of a
parallelogram constructed with k0 and k1.

orthogonal and can be directed along the major axes of the
atomic trap, as shown in the diagram of Fig. 2, where they are
visualized by dashed pink arrows. The vectors k0, k1, k2, k3

are respectively directed along the bisectrices of the main and
the three adjoining octants of the trap frame. The quantization
axis, coinciding with the direction of the external magnetic
field, could be associated with either k0 (if the depopulating
beam is circularly polarized) or with the beam polarization
direction (if it is linearly polarized). We shall prefer the
former option, since the entire coupling between the base and
destination states seems to be more effective for this case.1

The favorable Raman process is now depicted by the
transition diagram shown in Fig. 3. To be specific, we will
further assume that the source state |s〉 ≡ |F+, 0〉 is the upper
state of the “clock” transition in the ground-state hyperfine

1In this section we discuss the RSC protocol with minimal interfer-
ence of magnetic field and light shifts with atomic energy structure.
So the magnitude of the field is expected to be small and less than
gauss (Earth value) and therefore can be precisely controllable in
experiment. We briefly comment on an alternative option in the end
of Sec. IV.
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FIG. 3. The transition scheme corresponding to the excitation
geometry shown in Fig. 2. For a particular jth control beam the Ra-
man scattering transfers the atom onto the lower hyperfine sublevel
of the ground state, suppressing the respective vibrational number
vμ by one unit. Each control mode couples to a single vibrational
mode such that j = j(μ). The main scattering channel competes
with the off-resonant leakage onto the same spin states but with the
vibrational number conserved.

manifold of an alkali-metal atom. Here and throughout we
denote two possible values of the ground-state spin angular
momentum F0 = F+, F− with F± = I ± 1/2, where I is the
nuclear spin, and we use M0 = M± for the upper and lower
hyperfine sublevels. Each of the control beams opens three
transition channels, such that for the σ+-polarized depopula-
tion beam the target spin states |tx〉, |ty〉, and |tz〉 are expected
to be expressed as linear combinations of |F−, 0〉, |F−, 1〉, and
|F−, 2〉.

In accordance with the considered excitation geometry,
shown in Fig. 2, each jth control beam with j = 1, 2, 3
respectively causes the quenching of the vibrational motion
along μth axis with μ = x, y, z. The partial Raman passage,
associated with a particular beam, provides the transition
onto the set of states |m〉 = |F−, M−, . . . , vμ − 1, . . .〉, but the
complete transition accumulates the superposition of all such
states with μ = x, y, z. As we further explain, the polariza-
tions of the control beams should be taken as mutually orthog-
onal, and the constructed target spin states are expected (in
an ideal scenario) to slightly overlap each over, so the entire
destination state |d〉 would be close to the state, optimally
entangled in the spin and vibrational degrees of freedom, as
we have claimed by expansion (2.4).

The process of the stimulated resonant Raman passage
from the base state |b〉 to the destination state |d〉 is attenuated
by a small factor of the Lamb-Dicke parameter. If the system
has unitary dynamics and the spontaneous losses are negli-
gible, the main scattering channel would compete with the
leakage associated with the weak off-resonant scattering into
the same spin states but with conserved vibrational numbers.
Although the leakage, also indicated in the diagram of Fig. 3
as a transition to the states of the |m+〉 group, is weak, it is not
accompanied by the linear momentum transfer. So the optimal

RSC protocol should provide a minimal leakage per each step
of the Raman passage.

2. The time-dependent Schrödinger equation

For the sake of notation convenience, in this section we
denote any entire electronic and vibrational state as |m〉 ≡
|F0M0; vx, vy, vz〉 for the atom in the ground state and as |n〉 ≡
|FM; wx,wy,wz〉 for the atom in the excited state, where
we take into account that the coupling strength of the atom
with the trap is different for these states. Then the dynamical
part of the Raman process is driven by the time-dependent
Schrödinger equation. The wave function of the atom can be
expanded in the basis of its stationary states as follows:

|�(t )〉 =
∑

m

cm(t )e− i
h̄ Emt |m〉 +

∑
n

cn(t )e− i
h̄ Ent |n〉, (3.2)

where the expansion coefficients (probability amplitudes)
obey the Schrödinger equation written in the energy represen-
tation:

ċn(t ) = − i

h̄

∑
m

Vnm(t )eiωnmt cm(t ),

ċm(t ) = − i

h̄

∑
n

Vmn(t )eiωmnt cn(t ). (3.3)

Interaction with coherent fields, considered under the standard
restrictions of the rotating wave approximation (RWA), is
taken in the form

Vnm(t ) = − h̄

2

3∑
j=0

�( j)
nm(t )e−iω j t , (3.4)

with requirement Vmn(t ) = V ∗
nm(t ). The process is driven by

four coherent fields, and the matrix elements are param-
eterized by slowly varying time profiles of the respective
overlapping pulses having different carrier frequencies. In the
Schrödinger equation this is expressed by the time depen-
dence of the Rabi frequencies defined for the depopulating
component �(0)

nm(t ), and for the three control fields �(1)
nm(t ),

�(2)
nm(t ), and �(3)

nm(t ), correspondingly. As we further show,
the system can be adjusted for one-way Raman passage of
the atom from the source spin state |s〉 to a set of target
states |tμ〉 correlated with the respective vibrational modes
|..., vμ−1, ...〉, see Eq. (2.4).

Equation (3.3) can be simplified for far-off-resonant Ra-
man scattering so the contribution of the upper states in
Eq. (3.2) can be adiabatically eliminated. Indeed, by formally
integrating the first line and substituting the amplitudes cn(t )
into the second line we obtain

ċm(t ) =
(

− i

2

)2 ∑
j,k

∑
n,m′

�( j)
mn(t ) ei(ω j−ωnm )t

×
∫ t

−∞
dt ′�(k)

nm′ (t ′) e−i(ωk−ωnm′ )t ′
cm′ (t ′). (3.5)

The integral in the right-hand side can be approximately
evaluated if we note that the dominating terms with ω j −
ωk + ωmm′ ∼ 0 provide slow trend dynamics of the probability
amplitudes on a “coarse-grained” timescale. Then the cou-
pled modes obey the condition ω j − ωnm ∼ ωk − ωnm′ for all
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possible combinations of either Rayleigh or Raman channels.
In the integrand of Eq. (3.5) we can specify each kth mode
as detuned by �

(k)
nm′ = ωk − ωnm′ from a particular m′ → n

optical transition. The concept of adiabatic elimination im-
plies that the contribution of the nonexponential part of the
integrand, considered as a smooth function on a timescale
longer than 1/�

(k)
nm′ , can be reliably estimated by its instant

value at the time given by the upper limit of the integral. Then
the integral in Eq. (3.5) can be straightforwardly evaluated and
the equation takes the form

ċm(t ) = −i
∑

j,k

∑
n,m′

�
( j)
mn(t ) �

(k)
nm′ (t )

4�
(k)
nm′

× exp[i(ω j − ωk + ωmm′ )t] cm′ (t ), (3.6)

which can be treated as a reduced time-dependent Schrödinger
equation, mediating the slowly varying dynamics of the prob-
ability amplitudes driven by the effective interaction Hamilto-
nian, defined by the right-hand side of Eq. (3.6).

To avoid spontaneous scattering, the RSC protocol requires
quite far-off-resonant offset of the applied fields from the

upper state hyperfine manifold, and the respective detuning
should be comparable to or even higher than the ground-
state hyperfine splitting. In this case, in order to keep the
process, shown in the diagram of Fig. 3, as a dominated
scattering channel, other competing channels of elastic Raman
transitions, initiated by the control fields, should be prevented.
This can be provided by the inequality |�( j)

mn| � |�(0)
nm| for

j = 1, 2, 3. Then in the right-hand side of (3.6) it is enough
to leave only the terms driven by |�(0)

nm|2, �
( j)
mn �

(0)
nm′ , �(0)

mn �
(k)
nm′

for j, k = 1, 2, 3.

3. The optimization scheme

Consider the configuration with uniform rectangular pro-
files of the pulses, which drive the atom during the active time
interval 0 < t < τ . In accordance with the above arguments,
the time-dependent Schrödinger equation can be simplified
to the system of differential equations for the probability
amplitudes (3.6) by keeping only the leading resonant cou-
pling between the upper and lower states of the Raman
transition.

Now we revise our simplified notation, used in the preceding section, and separate again the specifications for the lower and
upper hyperfine sublevels of the ground states. Let us specify those upper states, which have M+ �= 0 and can be occupied in the
entire dynamics, as |b′〉 ≡ |F+, M+; vxvyvz〉 with −F+ � M+ � F+. We will distinguish the set of |b′〉 states from the base state
|b〉 with M+ = 0, which the atom initially populates. It is expected that under optimal conditions of the Raman passage all these
states are supposed to be depopulated and the atom to be converted onto the lower energy states |m〉 ≡ |F−, M−; . . . , vμ − 1, . . .〉
with −F− � M− � F−. The Raman process is described by the following equations for the upper states:

ċb(t ) = −i
∑

n

∣∣�(0)
nb

∣∣2

4�n
cb(t ) − i

∑
m

[∑
n

�
(0)
bn �

( j)
nm

4�n

]∣∣∣∣∣
j= j(m)

exp[i(ω0 − ω j + ωbm)t] cm(t ) + · · ·

ċb′ (t ) = −i
∑

n

∣∣�(0)
nb′

∣∣2

4�n
cb′ (t ) − i

∑
m

[∑
n

�
(0)
b′n�

( j)
nm

4�n

]∣∣∣∣∣
j= j(m)

exp[i(ω0 − ω j + ωb′m)t] cm(t ) + · · · , (3.7)

and by the complementing equations for the lower states,

ċm(t ) = −i
∑

n

∣∣�(0)
nm

∣∣2

4(�n − �hpf )
cm(t ) − i

[∑
n

�
( j)
mn�

(0)
nb

4�n

]∣∣∣∣∣
j= j(m)

exp[i(ω j − ω0 + ωmb)t] cb(t )

−i
∑
b′ �=b

[∑
n

�
( j)
mn�

(0)
nb′

4�n

]∣∣∣∣∣∣
j= j(m)

exp[i(ω j − ω0 + ωmb′ )t] cb′ (t ) + · · · . (3.8)

It is taken into consideration in these equations that each
mode j drives the atom from the state |m〉 associated with a
particular trap mode so that j = j(m), as clarified in Fig. 3
in an example of coupling with the base state |b〉. In the
right-hand side we have ordered the terms in accordance with
a hierarchy of their effect on the atom’s dynamics and the
ellipsis indicates the neglected terms. In the denominators we
have ignored the negligible difference in the field detunings so
that �nb = �

( j)
nm = �

(k)
nm′ ≡ �n < 0, and �hpf > 0 denotes the

hyperfine splitting in the ground state.
The first terms in the right-hand sides of Eqs. (3.7) and

(3.8) are associated with the light shifts of the energy states
participating in the process. The subtle point is that these shifts

induce undesirable dephasing to the constructed transition
amplitudes, which further affects their time dynamics. The
problem with light shifts can be resolved via optimal tuning
of the optical modes and with proper choice of the external
magnetic field. As a first step an optimal strategy suggests
to tune the Raman gates in resonance with the light-shifted
energy levels

ω j − ω0 + ωmb + δ̄m − δb = 0, (3.9)

where

δb =
∑

n

∣∣�(0)
nb

∣∣2

4�n
(3.10)
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is the light shift of the base state and

δ̄m =
∑

n

∣∣�(0)
nm

∣∣2

4(�n − �hpf )
(3.11)

is the mean light shift, averaged over the three final states
|F−, 0〉, |F−, 1〉, and |F−, 2〉, which are intended to be even-
tually occupied as shown in Fig. 3.

Let all b, b′ and m states be originally degenerate (zero
magnetic field) and express the probability amplitudes in the
form

cb(t ) = c̃b(t ) e−iδbt

cb′ (t ) = c̃b′ (t ) e−iδbt

cm(t ) = c̃m(t ) e−iδ̄mt (3.12)

and substitute them in Eqs. (3.7) and (3.8). Then Eqs. (3.7)
transform to

˙̃cb(t ) = −i
∑

m

[∑
n

�
(0)
bn �

( j)
nm

4�n

]∣∣∣∣∣
j= j(m)

c̃m(t ) + · · ·

˙̃cb′ (t ) = −i

[∑
n

∣∣�(0)
nb′

∣∣2

4�n
− δb

]
c̃b′ (t )

−i
∑

m

[∑
n

�
(0)
b′n�

( j)
nm

4�n

]∣∣∣∣∣
j= j(m)

c̃m(t ) + · · · , (3.13)

and Eq. (3.8) transforms to

˙̃cm(t ) = −i

[∑
n

∣∣�(0)
nm

∣∣2

4(�n − �hpf )
− δ̄m

]
c̃m(t )

−i

[∑
n

�
( j)
mn�

(0)
nb

4�n

]∣∣∣∣∣
j= j(m)

c̃b(t )

−i
∑
b′ �=b

[∑
n

�
( j)
mn�

(0)
nb′

4�n

]∣∣∣∣∣∣
j= j(m)

c̃b′ (t ) + · · · . (3.14)

As verified by our numerical simulations, condition (3.9)
already provides the effective Raman repopulation but not the
required entanglement between vibrational and spin subsys-
tems. That is because the Raman transition is most effective
to the |F−, 1〉 state, which has the best resonance coupling
when the light-induced Zeeman splitting is comparable with
the average light shift. The importance of entanglement was
clarified in our remark in the end of Sec. II. The situation
can be resolved if the residual m-dependent light shifts of the
target spin states, contributing to the first line of Eq. (3.14),
would be eliminated by applying an external magnetic field,
forming a compensating linear slope of the Zeeman energy
levels. Further, we will assume such a specially prepared
degenerate structure of states |F−, 0〉, |F−, 1〉, and |F−, 2〉.

Now we turn to the discussion of the mutual beam geom-
etry, shown in the diagram of Fig. 2, and are concerned with
how to arrange the optimal polarization choice of the control
modes. If we look at the basic strategy of the RSC protocol,
it would seem optimal that the process was approached by
an effective two-level transition between the base state |b〉

FIG. 4. A diagram showing how three light beams with mutually
orthogonal polarizations, indicated by solid arrows of different col-
ors, would have symmetric, but generally nonorthogonal, propaga-
tion directions along the wave vectors k1, k2, k3 with mutual angles
varied from 90◦ to 120◦, see text for detailed comments.

and the destination state |d〉, defined as a superposition of the
target spin and vibrational states, as explained by Eq. (2.4). If
we make a few iteration steps with Eqs. (3.13) and (3.14),
we can construct the perturbation theory expansion for the
system evolution operator. Each contribution to this expansion
consists of the product of the effective Hamiltonian matrix
elements, listed in Appendix B, and we obtain that the isolated
interplay between states |b〉 and |d〉 to be realized if (i)

�(1)η⊥
√

vx = �(2)η⊥
√

vy = �(3)η‖
√

vz , (3.15)

where �( j) denotes the reduced Rabi frequency for the jth
mode, see (B14); and if (ii) all the polarizations of the control
modes are mutually orthogonal. If both these conditions are
fulfilled, the atom’s dynamics becomes unitary (and periodic
in time) swapping, where the state |b〉 becomes a destination
state for the base state |d〉 and vice versa, similarly to (3.1).

The orthogonality of polarizations can be justified for the
proposed excitation geometry as proven by the diagram shown
in Fig. 4. In this figure the directions of the three control
beams (nonorthogonal themselves!), shown by dashed arrows,
are rotated around the three fixed orthogonal polarization
directions, shown by solid arrows. The required mutual angle
between the beams of each pair is 109.5◦ (see Fig. 2) and is
just inside the accessible interval varying from 90◦ to 120◦.

The system of differential equations (3.13) and (3.14) can
be numerically solved, and its solution gives us the target spin
states contributing to the decomposition (2.4):

C
(vxvyvz )
x |tx〉 =

∑
M−

cm(τ )|m=F−,M−;vx−1,vy,vz |F−, M−〉

C
(vxvyvz )
y |ty〉 =

∑
M−

cm(τ )|m=F−,M−;vx,vy−1,vz |F−, M−〉

C
(vxvyvz )
z |tz〉 =

∑
M−

cm(τ )|m=F−,M−;vx,vy,vz−1|F−, M−〉. (3.16)

If the source state is taken as the upper state of the “clock”
transition |s〉 = |F+, 0〉, then the target spin states |tx〉, |ty〉, and
|tz〉 would be preferably superposed as linear combinations of
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|F−, 0〉, |F−, 1〉, and |F−, 2〉 in accordance with the favorable
process shown in Fig. 3.

Such an ideal scenario is actually disturbed by an imperfec-
tion associated with violation of the condition (3.15), which
cannot be fulfilled for all the vibrational states, and as a conse-
quence, with partial occupation of |b′〉 states. Furthermore the
processes of off-resonant Raman conversion onto the states
|m+〉 preserving the atom’s vibrational mode creates leakage
from the main scattering channel, see Fig. 3. The respective
amplitude can be estimated with the aid of the perturbation
theory technique,

cm+ (τ ) ∼ −i
∫ τ

0
dt

3∑
j=1

[∑
n

�
( j)
m+n�

(0)
nb

4�n

]
ei�μt cb(t ), (3.17)

where cb(t ) is approximated by the solution of Eq. (3.13)
substituted into Eq. (3.12). Here �μ, with μ = μ( j), is the
vibrational frequency of the trap oscillator: �x = �y = �⊥
and �z = �‖. If the pulse duration is long enough such that
�μτ � 1, the oscillating factor in the integrand suppresses
the integral and reduces the amplitude cm+ (τ ).

The minimal pulse duration for which the competing off-
resonant process could be safely ignored requires that the
off-resonance reduction factor 1/�μτ � 1 competes with
and should be smaller than the Lamb-Dicke factor ημ =
k0

√
h̄/2mA�μ � 1, suppressing the transition amplitude of

the Raman passage. The sufficient condition 1/�μτ � ημ

indicates that the pulse duration τ should be taken longer
than k−1

0 /
√

h̄�μ/2mA ∼ λ̄0/δvμ, where λ̄0 = k−1
0 and δvμ =√

h̄�μ/2mA is the quantum uncertainty of the atomic veloc-
ity in the ground state of the oscillator well in μ = x, y, z
directions. This estimate shows us that the trap potential
confining the atom should be sufficiently tight. The structure
of the matrix elements presented in Appendix B softens the
above requirement by a factor of

√
vμ, which in the estimate

changes δvμ by a thermal velocity in the trap, so for typical
initial temperature, associated with preliminary cooling in
the magneto-optical trap, the pulse duration should be about
microseconds or longer. Furthermore, we obtain another in-
convenient problem: for the light pulses, having such a long
duration, the Raman passage should be prevented against the
losses associated with the spontaneous incoherent scattering,
which were ignored in our analysis.

IV. NUMERICAL SIMULATIONS

To illustrate the above arguments we present a set of
numerical simulations which were done for an example of
85 Rb with the source state |F+, 0〉 = |3, 0〉 as shown in Fig. 3.
We assume the mode frequencies �⊥ = 2π × 200 kHz and
�‖ = 2π × 100 kHz for the trap oscillator, which are poten-
tially attainable parameters for optical tweezers.2 That makes
the Lamb-Dicke parameters η⊥ ∼ 0.13 and η‖ ∼ 0.18 for

2Here the confinement strengths in the radial and axial directions
are taken in proportion 2 : 1 to provide a sufficiently small value
of the Lamb-Dicke parameter as an important constraint to the
RSC protocol. However, ratios within (4 ÷ 7) : 1 between radial
and axial mode frequencies are typically observed in experiments.

the radial and axial modes, respectively. With a relatively
low initial temperature of about 20 μK, the mean values
of the vibrational numbers for a trapped rubidium atom can
be estimated as v̄⊥ ∼ 2 and v̄‖ ∼ 4. The Raman passage
should be optimized by the condition (3.15) based on the
mean vibrational numbers, and we present our calculations
for v⊥ = v̄⊥ and v‖ = v̄‖ as well as for the numbers shifted
from their mean values by one standard deviation. To uncover
the evidence of radiation dressing of the atomic states and
its interference with the transition dynamics, we have made
comparative simulations of the Raman passage for two optical
detunings from the excited-state hyperfine manifold of � =
−1000γ and � = −5000γ . For the reduced Rabi frequencies,
defined by (B14), we chose �(0) = 20 γ , �(1) = �(2) = γ ,
and �(3) is fixed by condition (3.15).

Although the parameters used would let us consider the
reduced version of the Schrödinger equation (3.13) and (3.14)
with a cutoff, we performed our simulations based on the
Schrödinger equation in its general form (3.6), keeping all
the contributions. That lets us track the system dynamics
toward its long-term asymptote. We have assumed that an
additional external magnetic field, compensating the slope of
the light shifts, provided the Zeeman degeneracy for the lower
hyperfine sublevel. In turn, that makes a partial compensation
of the slope among the Zeeman states of the upper hyperfine
sublevel as well. But the latter is only approximately achieved
because of the difference in the frequency denominators in
Eqs. (3.10) and (3.11).

In Fig. 5 we reproduce the time dependence of |cb(t )|2
(occupation of the base state),

∑
m |cm(t )|2 (occupation of

the destination state), and
∑

b′ �=b |cb′ (t )|2 (the repopulation
imperfection) together with

∑
m+ |cm+ (t )|2 (leakage from the

main scattering channel). These graphs, plotted for detuning
� = −1000γ , confirm that the system indeed has a tendency
to complete depopulation of the base state |b〉 toward its
conversion onto the destination state |d〉, created at the ex-
tremal points of the slightly distorted periodical dynamics.
The efficiency of the process is quite persistent to reasonable
variations of the vibrational numbers, which justifies the con-
version of the entire cooling protocol down to the dark state. In
the figure we show the maximal amplitude of such variations,
which we obtained with either adding or subtracting one
standard deviation to each mean vibrational number.

It should be pointed out here that for detuning � =
−1000γ , despite that for the compensating magnetic field
the Zeeman structure of the upper hyperfine sublevel is still
resolved so that only the main resonance optical transitions,
shown in Fig. 3, are actually involved in the Raman process.
The optimal condition (3.15) is not critical for this case, and
the effective transfer is possible for any initial vibrational
state. However, as can be seen from the dependencies plotted
in Fig. 5, the occupation of the |d〉 state is attained at different
moments of time for different initial conditions.

The leakage demonstrates a periodical dependence as well,
but with a strong oscillatory behavior inside the main period.

Surprisingly, in experiments, see [29] as example, the heating during
the optical pumping cycle is not so critical, and axial cooling is
attainable for a quite shallow trap with �‖ ∼ 2π × 30 kHz.
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FIG. 5. Upper plot: Time dependence of the occupation proba-
bilities for the destination states

∑
m |cm(t )|2 (solid curves) and for

the base states |cb(t )|2 (dashed curves) calculated for the detuning
from optical resonance � = −1000γ and for varied vibrational
quanta. The green curves indicate the Raman passage for v⊥ = v̄⊥
and v‖ = v̄‖, and the satellite curves (gray) show the bounds of its
possible variation within one standard deviation of the vibrational
numbers from the mean values, see text for details. Other calculation
parameters are specified in the text. All the functions demonstrate
periodic dependence, and the system evolves to the destination
state at the extremal points. The time point, referring to complete
depopulation of the base state, determines the pulse duration τ for the
optimal Raman passage. Lower plot: The imperfection of the process∑

b′ �=b |cb′ (t )|2 and leakage from the main channel
∑

m+ |cm+ (t )|2,
shown for the same set of calculation parameters. Occupations of the
|b′〉 states are expressed by smooth dependencies and for the optimal
parameters are negligible, so the respective dependence is unresolved
in the graph scale. Weak leakage to |m+〉 states demonstrates an
oscillatory behavior with an amplitude less than 1%.

That results from a weak coherent coupling of the base
and |m+〉 states, expressed by a small and fast oscillating
transition probability, similarly to the Rabi-type oscillations
in a two-level problem. The occupation of these states tends
to vanish at those moments of time when the |b〉 state becomes
depopulated. The imperfection gives a weaker contribution
than leakage, and both processes are practically negligible
within our approximations and within the validity range of
our model.

In Fig. 6 we show the time dynamics of the occupa-
tion probabilities for the Raman passage with detuning � =
−5000γ . The main features of the dynamics are the same
as in the previous example, but the process becomes more
sensitive to the optimal conditions (3.15). That is a direct
consequence of vanishing Zeeman splitting in the upper hy-
perfine sublevel. So it could be expected that in the case

FIG. 6. Same as in Fig. 5 but for the detuning � = −5000γ . In
the optimal regime the imperfection makes negligible contribution to
the population dynamics, but the |b′〉 states become occupied within
a few percent of probability for deviations of the vibrational numbers
from their mean values. The leakage (lower panel) is invisible in the
graph scale.

of −� � �hpf ∼ 500 γ the imperfection would affect on
efficiency of the RSC protocol. Nevertheless, as can be seen
from the plotted dependencies, for the considered calculation
parameters the imperfection is still small and ignorable in the
general population balance.

As we emphasized in Sec. II, in order to optimize the RSC
protocol in a three-dimensional regime it would be desirable
that the target spin states |tx〉, |ty〉, and |tz〉 would be mutually
orthogonal. This requirement is not critical, but at least these
states should be prepared as linearly independent in the spin
subspace. We have verified that in the considered example
the target state overlaps are |〈tx|ty〉| ∼ |〈tx|tz〉| ∼ |〈ty|tz〉| ∼
0.66, such that the constructed states provide a complete but
nonorthogonal basis in the spin subspace. Then the destination
state |d〉 indeed forms a maximal entangled state, as it is
required for entire conversion of the cooling process.

Here we can point out that with anticipating a more compli-
cated experimental design the orthogonality of the target spin
states can be provided by preparation of the control beams
having different carrier frequencies. Imagine that the Zeeman
sublevels, shown in Fig. 3, are split by an external magnetic
field such that they are perfectly resolved for the driving
lasers. In this case, if each of the control beams was tuned in
resonance for a particular spin transition specifically selected
for each vibrational mode, then the atom could be repopulated
to different specific Zeeman states for different vibrational
modes. The problem with realization of such a scenario is
the additional technical difficulties of precise magnetic field
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control and in preparation of three strobe-type laser pulses
with different carrier frequencies precisely resolved in the
megahertz spectral domain.

V. CONCLUSION

In the paper we have presented a theoretical analysis of
the RSC protocol, which is a convenient and commonly used
experimental tool for control and quenching of the vibra-
tional motion of a single neutral atom confined with a dipole
trap (optical tweezers). As we have shown and highlighted
throughout our discussion, the simultaneous control of all
the degrees of freedom requires that in optimal configuration
the spin states and vibrational modes of the atom would be
entangled after the Raman cycle of the protocol. The next
observation is in a nontrivial geometry associated with the
excitation scheme adjusted for individual control of each
major vibrational mode. To make the Raman passage most
effective, the parameters of the control pulses obey the set of
critical requirements which concern the control beam polar-
izations and reduced Rabi frequencies, see (3.15). As we have
shown, with relevant choice of the external magnetic field and
cooling beams, the Raman process can be transformed to an
effective two-level transition scheme. That is supported by our
theoretical estimates, presented in Sec. III, and by numerical
simulations, presented in Sec. IV, which are connected with
optimization of the external parameters for RSC experiments
with alkali-metal atoms.

As follows from our numerical results shown in Figs. 5
and 6 and associated with the original equilibrium thermal
distribution, the duration of the Raman pulse has a slight
dependence on the initial number of quanta in the vibrational
state, which were varied near the mean equilibrium values.

As the protocol proceeds, the vibrational state evolves and
the average number of quanta reduces, and the statistical
distribution of the state evolves away from the equilibrium
Gibbs measure. Further optimization of the cooling protocol
may require changing the pulse length of the Raman pulses
to sustain optimal Raman passage conditions for later stages
of the cooling procedure. This possibility will be explored
elsewhere.

Let us note that the optimal geometry of Raman beams,
shown in Fig. 2 and associated with the paraxial approx-
imation, is not so straightforward to implement in a real
experimental setup. Tight focusing is required to obtain sub-
micron-sized dipole traps, which are a prerequisite for single-
atom trapping in the collisional blockade regime. There are
certain difficulties for experimental preparation of a dipole
trap, which would be sufficiently tight in axial direction. One
usually needs high-numerical-aperture lenses or objectives
to achieve submicron waists for the tweezers. Typically nu-
merical aperture more than 0.5 is used, which means that a
significant part of the full solid angle will be covered by the
lens itself, necessarily restricting the possible angles between
the Raman beams and the trap axes. Nevertheless, we believe
that it is important to consider the geometry described here,
since it corresponds to a theoretical optimum.
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APPENDIX A: TRANSFORMATION OF THE DENSITY MATRIX

In this Appendix we clarify the mathematical details of the density matrix transformation and verify the sufficient conditions
which provide the key result [Eqs. (2.6)–(2.9)] introduced in the main text.

After the atom makes a Raman passage (2.4), its total density matrix (2.1) is modified as follows:

ρ̂ ⇒ exp{β[F (β ) − ε000]}|0, 0, 0〉〈0, 0, 0|×|s〉〈s| +
∑

vx ,vy ,vz
vx+vy+vz�1

exp
{
β
[
F (β ) − εvxvyvz

]}

×
∑

μ=x,y,z

∑
μ′=x,y,z

C
(vxvyvz )
μ C

(vxvyvz )∗
μ′ |tμ〉| . . . , vμ−1, . . .〉〈. . . , vμ′−1, . . . |〈tμ′ |, (A1)

and expresses a nonseparable mixed state, further evolving in accordance with Eq. (2.5).
An incoherent optical pumping cycle breaks the time dynamics and converts the system again to the steady-state separable

product of a mixed vibrational component and a pure spin component,

ρ (1) = ρvib × |s〉〈s|. (A2)

For a tight trap with a sufficiently small Lamb-Dicke parameter, the optical pumping process does not affect the vibrational
degrees of freedom and has the only effect of repopulating the atom onto the source spin state |s〉, such that the density matrix
ρvib is the same before and after the repopulation. If the target states |tx〉, |ty〉, and |tz〉 are mutually orthogonal, we obtain

ρ̂vib = Tr′
spinρ̂ = exp{β[F (β ) − ε000]}|0, 0, 0〉〈0, 0, 0| +

∑
vx ,vy ,vz

vx+vy+vz�1

exp
{
β
[
F (β ) − εvxvyvz

]}

×
∑

μ=x,y,z

∣∣C(vxvyvz )
μ

∣∣2| . . . , vμ−1, . . .〉〈. . . , vμ−1, . . . |, (A3)
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where in the second term of the right-hand side we can select the ground vibrational state (i.e., the contributions with vx + vy +
vz = 1) and add it to the first term. So we get

ρ̂vib = exp{β[F (β ) − ε000]}{1 + 2 exp[−β h̄�⊥] + exp[−β h̄�‖]}|0, 0, 0〉〈0, 0, 0|
+

∑
vx ,vy ,vz

vx+vy+vz�1

exp
{
β
[
F (β ) − εvxvyvz

]} ∑
μ=x,y,z

∣∣C(...vμ+1...)
μ

∣∣2
exp[−β h̄�μ]|vx, vy, vz〉〈vx, vy, vz|, (A4)

where we additionally shifted up the vibrational sum on one unit in the second term, so the sum still starts from vx + vy + vz � 1.
The obtained density operator describes a stationary mixed state which is, however, not expressed here by a Gibbs-type measure
of a canonical ensemble.

In the total density matrix (A2) we can select the particular contribution of the dark state,

ρ̂ (1) = exp{β[F (β ) − ε000]}{1 + 2 exp[−β h̄�⊥] + exp[−β h̄�‖]}|0, 0, 0〉〈0, 0, 0| × |s〉〈s| + · · · , (A5)

which is now enhanced by a factor coinciding with the oscillator’s partition function cutoff up to the first excitation order with
vx + vy + vz � 1.

To justify this observation, in a general case let us calculate the enhancement factor after the second step of the protocol. To do
this we have to keep only the following specific states in expansion (A4): |1, 0, 0〉 (repopulated from the states |2, 0, 0〉, |1, 1, 0〉
and |1, 0, 1〉), |0, 1, 0〉 (repopulated from |1, 1, 0〉, |0, 2, 0〉, and |0, 1, 1〉), and |0, 0, 1〉 (repopulated from |1, 0, 1〉, |0, 1, 1〉, and
|0, 0, 2〉). The C coefficients contributing to (A4) fulfill the following normalization conditions:∣∣C(200)

x

∣∣ = 1,
∣∣C(020)

y

∣∣ = 1,
∣∣C(002)

z

∣∣ = 1∣∣C(110)
x

∣∣2 + ∣∣C(110)
y

∣∣2 = 1∣∣C(101)
x

∣∣2 + ∣∣C(101)
z

∣∣2 = 1∣∣C(011)
y

∣∣2 + ∣∣C(011)
z

∣∣2 = 1. (A6)

The coefficients are not independent and cannot be taken as arbitrary parameters of the protocol, since they are explicitly
determined by the complete structure of the applied Raman pulse.

Let us clarify the expansion (A5) by showing those terms which would be further transformed to the dark state at the second
step of the protocol:

ρ̂ (1)= exp{β[F (β ) − ε000]}{1 + 2 exp[−β h̄�⊥] + exp[−β h̄�‖]}|0, 0, 0〉〈0, 0, 0| × |s〉〈s|
+ exp{β[F (β ) − ε100]}{∣∣C(200)

x

∣∣2
exp[−β h̄�⊥] + ∣∣C(110)

y

∣∣2
exp[−β h̄�⊥] + ∣∣C(101)

z

∣∣2
exp[−β h̄�‖]

}|1, 0, 0〉〈1, 0, 0| × |s〉〈s|
+ exp{β[F (β ) − ε010]}{∣∣C(110)

x

∣∣2
exp[−β h̄�⊥] + ∣∣C(020)

y

∣∣2
exp[−β h̄�⊥] + ∣∣C(011)

z

∣∣2
exp[−β h̄�‖]

}|0, 1, 0〉〈0, 1, 0| × |s〉〈s|
+ exp{β[F (β ) − ε001]}{∣∣C(101)

x

∣∣2
exp[−β h̄�⊥] + ∣∣C(011)

y

∣∣2
exp[−β h̄�⊥] + ∣∣C(002)

z

∣∣2
exp[−β h̄�‖]

}|0, 0, 1〉〈0, 0, 1| × |s〉〈s|
+ · · · . (A7)

After the round of both the Raman conversion and optical pumping cycles the selected terms would be transformed into the dark
state and incorporated as one contribution. With taking into account (A6), we arrive at the following modification of the density
matrix at the second step of the protocol:

ρ̂ (2) = exp{β[F (β ) − ε000]}{1 + 2 exp[−β h̄�⊥] + exp[−β h̄�‖] + 3 exp[−2β h̄�⊥] + 2 exp[−β h̄�⊥ − β h̄�‖]

+ exp[−2β h̄�‖]} × |0, 0, 0〉〈0, 0, 0| × |s〉〈s| + · · · , (A8)

which can be equivalently written as

ρ̂ (2) = exp{βF (β )}
∑

vx ,vy ,vz
vx+vy+vz�2

exp
[−βεvxvyvz

]|0, 0, 0〉〈0, 0, 0| × |s〉〈s| + · · · . (A9)

The remaining terms, indicated by the ellipsis, describe the population of the excited states of the oscillator, and the statistical
distribution is not reproduced by the canonical Gibbs measure. The population of the excited states is suppressed, and the
contribution of the dark state is enhanced by the partition function cutoff in the second order of the oscillator’s excitation
spectrum with vx + vy + vz � 2.

By expanding the above arguments up to higher orders of the RSC protocol we can justify the strategic result reproduced by
Eqs. (2.6)–(2.9) in the main text. It might seem that the above transformations could be revised for anharmonic potential as well.
However, we could point out that for preparing the Raman passage in a multilevel configuration one needs a reasonably limited
number of control pulses of different carrier frequencies, which can be provided for equidistant vibrational steps and would be
difficult to do for highly excited anharmonic oscillators.
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APPENDIX B: THE MATRIX ELEMENTS CONTRIBUTED TO (3.13) AND (3.14)

As a representative example we consider here only those coupling coefficients in Eqs. (3.13) and (3.14) which are responsible
for the Raman passage with quenching of the vibration along the x direction. Other matrix elements of the effective Hamiltonian
can be similarly constructed from the expressions derived below, with simple change in the mode indices. For the same reason, we
can associate |b′〉 and |b〉 with one type of states, which we further denote as |b〉. We specify all the matrix elements contributing
to the coupling coefficients by the complete set of the system quantum numbers and then express them via the basic spectral
parameters of the process.

For the coefficient responsible for transferring the atom from state |b〉 to state |m〉 in Eq (3.14) we obtain

∑
n

�(1)
mn�

(0)
nb

4�n
=

∑
FM

1

h̄2�F

×
∑

wx,wy,wz

〈F−M−; vx − 1, vy, vz|(d · E∗
1 )e−ik1·r|FM; wx,wy,wz〉〈FM; wx,wy,wz|(d · E0)e+ik0·r|F+M+; vx, vy, vz〉

=
∑
FM

〈F−M−|(d · E∗
1 )|FM〉〈FM|(d · E0)|F+M+〉

h̄2 �F
× 〈vx − 1| exp

[
i

2√
3

k0x

]
|vx〉, (B1)

where in the last line we made use of the completeness relation for the vibrational degrees of freedom for the atom excited to the
upper state. In the definitions of the Rabi frequencies, E0 and E1 are the vectors of complex amplitudes of the depopulating and
the control modes, respectively. The detuning �n ≡ �F is specified by the total angular momentum of the upper state hyperfine
sublevels. The exponent in the vibrational matrix element, selected to the last factor, contains only x-directed displacement of
the atom’s position from the trap origin, which shows that vibration quenching along the x direction is associated with switching
on the ω1 control mode.

The selected matrix element can be evaluated as follows:

〈vx − 1| exp

[
i

2√
3

k0x

]
|vx〉 ≈

〈
vx − 1

∣∣∣∣i 2√
3

k0x

∣∣∣∣vx

〉
= i

2√
3

k0

√
h̄vx

2mA�⊥
= i

2√
3

η⊥
√

vx, (B2)

where

η⊥ = k0 x0 = k0

√
h̄

2mA�⊥
(B3)

is the so-called Lamb-Dicke parameter (factor), x0 = √
h̄/2mA�⊥ is the spread of the zero-point oscillator wave function, and

mA is the atomic mass. In the above estimate we have assumed that η⊥
√

vx � 1. Otherwise the precise evaluation of the above
matrix element would be needed, see [35]. Nevertheless, just the validity of such a strong inequality is a key requirement for
applicability of the RSC protocol itself. Remember that at the optical pumping stage of the protocol it is crucially important
that the atom would preserve its vibrational mode in interaction with the pump light, which is provided by a small value of the
Lamb-Dicke factor.

The coupling coefficient responsible for the inverse process contributing to Eq. (3.13), which repopulates the atom back to
the Zeeman states of the upper hyperfine sublevel, can be expressed in a similar way:

∑
n

�
(0)
bn �(1)

nm

4�n
=

∑
FM

1

h̄2�F

×
∑

wx,wy,wz

〈F+M+; vx, vy, vz|(d · E∗
0 )e−ik0·r|FM; wx,wy,wz〉〈FM; wx,wy,wz|(d · E1)e+ik1·r|F−M−; vx − 1, vy, vz〉

=
∑
FM

〈F+M+|(d · E∗
0 )|FM〉〈FM|(d · E1)|F−M−〉

h̄2 �F
× 〈vx| exp

[
−i

2√
3

k0x

]
|vx − 1〉, (B4)

where

〈vx| exp

[
−i

2√
3

k0x

]
|vx − 1〉 ≈ −

〈
vx

∣∣∣∣i 2√
3

k0x

∣∣∣∣vx − 1

〉
= −i

2√
3

k0

√
h̄vx

2mA�⊥
= −i

2√
3

η⊥
√

vx. (B5)

Other terms associated with the quenching of the vibrations along y and z directions can be straightforwardly written with a
simple modification of the above equations by substituting mode index 1 → 2, 3, vibrational quantum number vx → vy, vz, and
oscillator frequency �⊥ → �⊥, �‖ and, respectively, the Lamb-Dicke factor η⊥ → η⊥, η‖.

Other terms in the right-hand side of the system (3.13) and (3.14) contain the coefficients, which are diagonal in the basis of
the oscillator states and are independent of the vibrational quantum numbers. The interaction solely with the depopulating mode
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is expressed by the following coefficients:

∑
n

∣∣�(0)
nb

∣∣2

4�n
=

∑
FM

1

h̄2�F

×
∑

wx,wy,wz

〈F+M+; vx, vy, vz|(d · E∗
0 )e−ik0·r|FM; wx,wy,wz〉〈FM; wx,wy,wz|(d · E0)e+ik0·r|F+M+; vx, vy, vz〉

=
∑
FM

〈F+M+|(d · E∗
0 )|FM〉〈FM|(d · E0)|F+M+〉

h̄2 �F
(B6)

and

∑
n

∣∣�(0)
nm

∣∣2

4(�n − �hpf )
=

∑
FM

1

h̄2(�F − �hpf )

×
∑

wx,wy,wz

〈F−M−; . . . , vμ − 1, . . . |(d · E∗
0 )e−ik0·r|FM; wx,wy,wz〉〈FM; wx,wy,wz|(d · E0)e+ik0·r|F−M−; . . . , vμ − 1, . . .〉

=
∑
FM

〈F−M−|(d · E∗
0 )|FM〉〈FM|(d · E0)|F−M−〉
h̄2(�F − �hpf )

, (B7)

which are both insensitive to the vibrational motion.
Each amplitude E0 and E j can be factorized as E0 = e(0)E0 and E j = e( j)E j (no sum) and give us a set of the unit polarization

vectors separated from the scalar part of the complex field amplitudes. In order to find the above coefficients in the closed
form, we have to evaluate the matrix element for the product d · e, where e can be any of the mode polarization vectors. The
tricky point is that in the above equations all the vector components are defined in respect to the reference frame associated
with the depopulating beam. So the projections of e(0) and e( j) have to be precisely specified and connected with the considered
experimental geometry shown in the diagrams of Figs. 2 and 4.

The atomic dipole moment is a real vector and is physically observable, but it is convenient to express this quantity via its
complex spherical components. The complex basis set of spherical unit vectors is given by

e0 = ez

e±1 = ∓(ex ± iey)/
√

2 . (B8)

Then the spherical components of the dipole operator are given by its projections on these vectors,

dq = d · eq

d0 = dz

d±1 = ∓(dx ± idy)/
√

2 , (B9)

and their angular dependence is equivalent to Y1q(θ, φ) spherical functions.
The basic matrix element of the dipole operators is off diagonal in the basis of the ground and excited atomic states specified

by the quantum numbers of total angular momentum and its projection,

(d · eq)nm ≡ 〈F, M|dq|F0, M0〉. (B10)

The transition matrix element of an atomic dipole operator can be evaluated with the aid of the Wigner-Eckart theorem and can
be factorized in the following product:

〈F, M|dq|F0, M0〉 = 〈F ‖d ‖F0〉√
2F + 1

CFM
F0M0 1q, (B11)

where C...
... ... is the Clebsch-Gordan coefficient and factor 〈F ‖d ‖F0〉 is the reduced matrix element of the dipole (vector) operator,

see [36].
The quantum numbers F, M and F0, M0 are the values of the total angular momenta for the composition of electronic (orbital

and spin) and nuclear (spin) states into a coupled hyperfine state. In the decoupled basis the dipole operator does not affect the
nuclear subsystem. In this case it is convenient to eliminate the nuclear subsystem according to the weakness of the hyperfine
interaction with respect to the spin-orbital interaction. Omitting the derivation details, we reproduce the final result here. The
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reduced matrix element of the dipole operator can be factorized as follows:

〈F ‖ d ‖ F0〉 = (−)F0+J+I−1[(2F + 1)(2F0 + 1)]1/2

{
S I F0

F 1 J

}
〈J ‖ d ‖ S〉, (B12)

where the factor 〈J ‖d ‖S〉 performs the reduced matrix element when the nuclear subsystem is completely ignored. Here J
is the total (spin and orbital) angular momentum of the excited state, and S ≡ J0 = 1/2 is the electronic spin coinciding with
the total angular momentum of the ground state. The table factor in curly braces is the so-called 6 j symbol appearing due to
decomposition of the coupled state in the decoupled basis of the electronic and nuclear spin subsystems, see [36].

The performed factorization of the transition matrix element for an atomic dipole operator allows us to express it by an
experimentally measurable parameter, namely, by the spontaneous radiation decay rate, which is given by

γJ = 4ω3
J0

3h̄c3

|〈J ‖ d ‖ S〉|2
2J + 1

∼ γ , (B13)

where ωJ0 is the transition frequency for either J = 1/2 (D1 line) or J = 3/2 (D2 line). In reality, the decay rate γJ is weakly
sensitive to the fine-structure splitting in the upper state such that it is practically the same for both lines. Thus the expressions
(B11)–(B13) allow us to scale the set of the transition matrix elements for an atomic dipole via one well-known experimental
parameter–

√
γ . But in the case of Eqs. (3.13) and (3.14), it seems more natural to incorporate the reduced dipole moment and

the field amplitudes into the set of reduced Rabi frequencies given by

�(0) = 2|〈J ‖ d ‖ S〉|E0

�( j) = 2|〈J ‖ d ‖ S〉|E j, (B14)

which can be scaled by the decay rate γ .
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