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Quantum interface between light and a one-dimensional atomic system
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We investigate optimal conditions for the quantum interface between a signal photon pulse and one-
dimensional chain consisting of a varied number of atoms. The tested object is physically designed as an atomic
array of tripod-type atoms confined with a nanoscale dielectric waveguide and experiencing its fundamental
HE11 mode. The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide
evanescent field with the trapped atoms. We verify those physical conditions when the coupling within the main
scattering channels would be sufficient for further providing various elementary interface protocols such as light
storage, light-matter entanglement, preparation of a few photon states on demand.
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I. INTRODUCTION

Realization of noisy protected quantum communications
with the concept of quantum repeater protocol [1,2] needs
highly effective quantum memories as a key element for its
technical implementation. Cold and ultracold atomic systems
are considered as a convenient physical platform for providing
controllable interchange by the quantum states between a
signal light pulse and atomic register [3,4]. Recent experi-
ments have revealed that ensembles of alkali-metal atoms can
demonstrate a long-lived and quite effective memory for qubit
mapping onto the atomic ground state spin subsystem [5–8].
Constructing stable configurations of atomic arrays opens
perspective for preparation of multiqubit quantum registers
and for quantum simulations with avoiding decoherence in
the multiqubit systems due to infinitely long natural relaxation
time. In free space one accomplishes a near-deterministic
loading up to hundreds of atoms in the microtraps with oc-
cupation of a single atom per trap and arrangement of optical
tweezers into lattices of arbitrary shape with holographic
techniques [9,10]. Integration with a nanofiber assisted tech-
nique allows preparation of even more (up to thousands)
atoms confined with the nanofiber waveguide and controlled
by interaction with the evanescent field of the fundamental
waveguide mode [11–13]. The technique has shown various
convenient options helpful for further implementation to the
quantum interface between light and one-dimensional atomic
lattices, such as anisotropic and dimensional controllable co-
operative emission [14] and strong cooperative light reflection
[15,16].

On the other hand, recent studies of coherent optical pro-
cesses developing in cold and ultracold atomic systems have
elaborated various experimental methods for manipulation
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with collective atomic states at the mesoscopic level and with
quantum precision [3,17]. That motivated a number of sup-
porting theoretical treatments towards complex description of
the interaction processes developing between small atomic
samples and a few photon states of light.

For the ensembles of cold atoms, existing in the nonde-
generate phase and approximated by collections of infinitely
massive particles, the atom-field interaction is relevantly de-
scribed in the dipole approximation. The microscopic descrip-
tion, beyond the self-consistent approach, can be developed
if the fundamental solution of the Maxwell equation for a
pointlike dipole source can be constructed in analytical form
and allows one to evaluate the resolvent operator of the system
Hamiltonian [18–22]. That cannot be so simply done in the
case of atoms confined with a nanostructure and therefore has
to be additionally motivated.

The important extensions of empirical description of the
collective processes, primarily based on the simplified as-
sumption of two-level atoms, have indicated various manifes-
tations of cooperative phenomena [23–25] and quantum cor-
relations [26] in the one-dimensional atomic configurations.
In two- and three-level models with quantum description of
the guided light, the action of the control field is normally
considered via coupling with a signal level isolated from inter-
action with the waveguide [25]. Nevertheless the testing of the
electromagnetically induced transparency (EIT) process, with
precise polarization description of both the guided field and
control mode, has revealed its strong sensitivity to the mode
structure and distribution of atoms [27]. The microscopic
analysis, beyond the self-consistent description of the atomic
subsystem and presented for a closed and solvable vector
model, would help in experimental verification of such impor-
tant phenomena as quantum entanglement and cooperativity
and guide us towards optimal conditions for the quantum
interface.
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In this paper we are aiming to elaborate the microscopic
approach for an atomic system in the complete vector model
for tripod-type atoms confined with a nanofiber waveguide,
which we consider as a convenient and realistic illustration of
a one-dimensional scheme for any quantum interface proto-
col. In particular the abilities of the quantum memory protocol
will be examined by numerical simulations based on the
formalism of the quantum scattering theory. We consider the
standard configuration for the scattering of a single photon
wave packet from an atomic array in the presence of the con-
trol mode driving the empty transition. The atoms are treated
as infinitely massive immobile particles distributed along the
waveguide in either ordered or disordered configuration and
separated by a distance either exactly or approximately ful-
filling the conditions of the Bragg coherent scattering. As can
be expected, such a deviation in distributions would lead to
dramatic changes in manifestation of the cooperative effects.

We can precede our discussion by the following suggestive
arguments pointing to the important difference with a similar
scattering process developing in free space. For a nonsatu-
rating light pulse its propagation through an atomic sample
in the diffusion regime obeys the Beer-Lambert-Bouguer law,
which is valid for each segment of its ballistic passages. The
spectrum of incoherent losses near the resonance is scaled
as γ

√
b0, where γ is a single atom spontaneous decay rate

and b0 is optical depth of the sample at the resonance point.
For a one-dimensional system confined with a waveguide we
can apply a similar estimate for the incoherent losses with
substituting the optical depth by the total number of atoms in
the chain N , and with expanding the spontaneous decay only
on external modes with a rate γ ext, so the spectrum is scaled as
γ ext

√
N . On the other hand, the rate of cooperative emission

from a one-dimensional Dicke-type atomic system, consisting
of N atoms, is scaled as γ wgN where γ wg is the emission rate
per atom into the waveguide mode. Typically γ ext ∼ γ � γ wg

(a small factor of Purcell enhancement) such that for a single
atom the light is mostly scattered into the external modes.
But the balance could be changed once the atomic chain was
prepared with a sufficiently large number of atoms if N >

(γ /γ wg)2. Then one can expect a highly effective interaction
between the signal pulse and atomic array by communication
via the waveguide and with minimizing the losses. We are
aiming to demonstrate such a scenario in the presence of the
control field by a round of microscopic ab initio numerical
simulations presented for a collection of tripod-type atoms
confined with a nanoscale dielectric waveguide.

The paper is organized in two parts. In Sec. II we overview
our calculation approach and in Appendix we show how the
photon Green’s function can be corrected for light propagation
near a nanofiber structure. In Sec. III we present the results
of our numerical simulations and discuss how the memory
effect depends on the scattering geometry and on the number
of atoms. We summarize our main results in Conclusion.

II. THEORY

In this section we generalize the theoretical approach
previously developed in [21] towards (i) examination of the
scattering process in its dependence on the number of atoms
and their distribution in the chain and (ii) introducing the

control field. For detail definitions, notations, and the links
with the standard formalism of the quantum scattering theory,
which we will follow here, we refer the reader to [18,19,21].

A. The scattering matrix and resolvent operator

In accordance with general principles of the scattering the-
ory the dynamics of a single photon wave packet interacting
with an atomic sample can be described in formalism of the
scattering S matrix that transforms the system states from
infinite past |ψ〉in to infinite future |ψ〉out as a result of the
interaction process [28]. In the interaction representation, the
corresponding asymptotic transformation is given by

|ψ〉out = e
i

2h̄ H0τ e− i
h̄ H τ e

i
2h̄ H0τ |ψ〉in ≡ Ŝ|ψ〉in, (2.1)

where τ → +∞, H is the system Hamiltonian, and H0 is its
noninteracting part. The operator Ŝ can be represented as a
matrix in a decoupled basis of two interacting subsystems,
which we specify as |φi〉 for the initial and |φi′ 〉 for the
final system states. As shown in [21] for the one-dimensional
system the representative matrix elements of the S matrix are
given by

Si′i = δi′i − i
L

h̄vg
Ti′i(Ei + i0), (2.2)

where the initial and final states i ≡ g, s and i′ ≡ g′, s′ spec-
ify the scattering within the waveguide modes s → s′ and
with changing of the internal collective spin state in atomic
system g → g′. The S matrix is parametrized by a length
of quantization segment L (defining the longitudinal mode
structure; see below) and the group velocity vg assists the free
propagation of the incoming and outgoing wave packets along
the fiber before and after interaction. The scattering dynamics
is described by the T matrix, contributed to the second term in
(2.2), which can be expanded in the perturbation theory series
and than can be calculated by the Feynman diagram method.

In the case of a near-resonance scattering the T -matrix
elements are given by

Tg′s′,gs(E )

= 2π h̄
√

ωs′ωs

N∑
b,a=1

∑
n′,n

(d·D(s′ )(rb))∗n′m′
b
(d·E(s)(ra))nma

×〈. . . m′
b−1, n′, m′

b+1 . . . | ˜̂R(E )| . . . ma−1, n, ma+1 . . .〉,
(2.3)

where ωs and ωs′ are the frequencies of the incident and scat-
tered photons, respectively.1 The incident mode s contributes
by its electric field profile E(s)(r) and the outgoing mode s′
contributes by the profile of its displacement field D(s′ )(r).
The incident photon is annihilated and the outgoing photon
is created at location points ra and rb of arbitrary atoms
of the atomic chain. The transition amplitude is intrinsically

1We will call such a quasiparticle a photon, but strictly saying it is
a polariton wave propagating through a dielectric waveguide, but we
shall reserve the term “polariton” for the superposition of this wave
with a single atom excitation (see below).
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determined by the matrix element of the resolvent operator
of the system Hamiltonian projected onto a collective atomic
state with a single optical excitation,

˜̂R(E ) = P̂ R̂(E ) P̂ ≡ P̂
1

E − Ĥ
P̂. (2.4)

The projector P̂ is given by

P̂ =
N∑

a=1

∑
{mj }, j �=a

∑
n

|m1, . . . , ma−1, n, ma+1, . . . mN 〉

× 〈m1, . . . , ma−1, n, ma+1, . . . mN | × |0〉〈0|Field, (2.5)

and selects in the atomic Hilbert subspace the entire set of
the states where any jth of N − 1 atoms populates a Zeeman
sublevel |mj〉 in its ground state and one specific ath atom
(with a running from 1 to N and j �= a) populates a Zeeman
sublevel |n〉 of its excited state. The field subspace is projected
onto its vacuum state and the operator ˜̂R(E ) can be further
considered as a matrix operator acting only in the atomic sub-
space. In the representation of the T matrix by the expansion
(2.3) the selected specific product of matrix elements runs all
the possibilities when the incoming photon is annihilated on
any ath atom and the outgoing photon is created on any bth
atom of ensemble, including the possible coincidence a = b.
The initial atomic state is given by |g〉 ≡ |m1, . . . , mN 〉 and the
final atomic state by |g′〉 ≡ |m′

1, . . . , m′
N 〉, where atoms can

populate all the accessible internal states. The normalization
length L cancels out when substituting (2.3) into (2.2), so the
elements of the S matrix (2.2) give us the set of the quan-
tum probability amplitudes for observation of the system, in
particular final states in the quasi-one-dimensional scattering
process.

For the system consisting of many atoms with a degenerate
ground state there is an exponentially increasing number of
scattering channels. Hopefully for most of the problems asso-
ciated with the quantum interface, such as quantum swapping,
memories, entanglement, etc., the elastic scattering channel
and the channels with a minimal number of Raman transitions
are mostly important. This significantly simplifies the problem
of constructing the resolvent operator (2.4) by letting us
operate in a representative part of the Hilbert subspace; see
comments below in Sec. II D. The critical step in solving the
many-particle problem is to build up the Green’s function
of the electric field, which is identified as the fundamental
solution of the Maxwell equations for a pointlike dipole
source located near a nanostructure.

B. The electric field Green’s function

As proven in statistical physics (see [29]), the causal-type
electric field Green’s function considered in a spatial region
near a macroscopic object can be expressed by the retarded-
type fundamental solution of the macroscopic Maxwell equa-
tions,

D(E )
μν (r, r′; ω) = −i

∫ ∞

−∞
dτ eiωτ〈T Eμ(r, t ) Eν (r′, t ′)〉|τ=t−t ′

= ω2

c2
D(R)

μν (r, r′; |ω|), (2.6)

where the D(R) function is the fundamental solution for a
pointlike charge distribution and the D(E ) function reproduces
the electric field emitted by a pointlike dipole source. It is cru-
cially for the paradigm of statistical physics that the integrand
in the first line of (2.6) is associated with the expectation value
of a microscopically defined time-ordered product (pointed by
the T symbol) of the electric field operators in the Heisenberg
representation. In the considered case the D(E ) function is
given by the sum of two contributions,

D(E )
μν (r, r′; ω) = D(wg)

μν (r, r′; ω) + D(ext)
μν (r, r′; ω). (2.7)

The first term is the contribution of the waveguide modes,
which is given by

D(wg)
μν (r, r′; ω) =

∑
s

4π h̄ω2

ω2 − ω2
s + i0

E (s)
μ (r) E (s)∗

ν (r′). (2.8)

Here we have introduced the μth and νth Cartesian compo-
nents of the vector mode functions E(s)(r). These functions
should be found via the respective solution of the homoge-
neous Maxwell equations and fulfill the following normaliza-
tion conditions:∫

d3r ε(r) E(s′ )∗(r) · E(s)(r)

≡
∫

d3r D(s′ )∗(r) · E(s)(r) = δs′s, (2.9)

where ε(r) = 1 + 4πχ (r) is the dielectric permittivity and
D(s′ )(r) = ε(r) E(s′ )(r) is the displacement field of the s′
mode. Each mode is parametrized by entire mode index s =
σ, k where σ = ±1 is its azimuthal quantum number and k is
its longitudinal wave number. The integral over the longitudi-
nal z variable is bounded by the quantization segment L → ∞
and implies periodic boundary conditions and a quasidiscrete
spectrum of k.

The term D(ext) in Eq. (2.7) is the contribution of light emis-
sion into the external modes. For a pointlike dipole source,
separated from the fiber surface by a distance comparable with
the fiber diameter of the subwavelength scale, this term can be
approximated by the vacuum Green’s function D(0) slightly
distorted by the presence of the waveguide. In Appendix we
show how this term can be constructed in analytical form
according to the basic principles of the scattering theory.

C. Signal light, mode structure, control field

We consider the signal light as a single-photon pulse propa-
gating through the waveguide and expanded in its fundamen-
tal mode. There are two degenerate modes specified by the
index s = σ, k, distinguished by their azimuthal numbers σ =
±1. In cylindric coordinates ρ, φ, z the mode components (the
positive frequency components of the electric field) can be
factorized as

E (s)
q (r) = E (σk)

q (ρ)
1√

2πL
eiσφ eikz, (2.10)

where the vector projections are referred with the local
basis, for which directors are enumerated by q = ρ, φ, z.
The two azimuthal modes can be expressed by three basic
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FIG. 1. Visualization of the fundamental HE11 mode with the
azimutal number σ = −1 (total angular momentum of the mode).
The mode is superposed in three terms having different and mutually
orthogonal polarizations σ−, π and σ+, which gives the set of the
internal (spin) angular momenta of the mode. The contributing terms
have orbital angular momenta l = 0, l = −1 and l = −2, respec-
tively, and provide the conservation of the total angular momentum.
Only the dominant σ−, l = 0 term survives the limit of an infinitely
thin dielectric fiber and transforms to a plane wave propagating in
free space.

functions:

E (±1k)
ρ (ρ) = Eρ (ρ),

E (±1k)
φ (ρ) = ±Eφ (ρ),

E (±1k)
z (ρ) = Ez(ρ), (2.11)

which can be explicitly constructed as a combination of the
Bessel functions by solution of the homogeneous Maxwell
equations (see [21,30]).

It is more convenient to expand the modes in the Cartesian
basis, directly connected with definitions of the atomic eigen-
states. Then the electric field components are given by

E (±1k)
x (ρ, φ) = Eρ (ρ) − iEφ (ρ)

2
√

2π
+ Eρ (ρ) + iEφ (ρ)

2
√

2π
e±2iφ,

E (±1k)
y (ρ, φ) = ± iEρ (ρ) + Eφ (ρ)

2
√

2π
∓ iEρ (ρ) − Eφ (ρ)

2
√

2π
e±2iφ,

E (±1k)
z (ρ, φ) = Ez(ρ)√

2π
e±iφ. (2.12)

We will further assume the field distribution in the HE11

mode as mostly concentrated outside the waveguide with the
quite extended evanescent part. The mode is constructed as
a superposition of the dominating transverse contributions,
expressed by the first terms in the first and second lines of
Eq. (2.12), with additional components possessing an orbital
angular momentum. The orbital angular momentum induces
precession to the Poynting vector of the propagating wave,
which makes an important difference for the waveguide mode
(2.12) with a plane wave propagating in free space.

The specifics of the fundamental waveguide mode is clar-
ified in the diagram of Fig. 1 in the example of the σ = −1
azimuthal component and with regard to the optical transitions
of a tripod-type atom. In the Cartesian frame associated with
the atomic transitions there are three orthogonal polarization

FIG. 2. The transition diagram for the light storage protocol of a
signal light pulse (magenta solid arrow) propagating in the σ = −1
azimuthal mode and converted onto the atomic spin subsystem via
the pulse scattering into the control mode (double red arrow). In this
example the atoms are spin oriented along the z axis and the control
beam C is linearly polarized along the z axis and directed perpen-
dicularly to the fiber. The dashed arrows indicate the spontaneous
losses.

components conventionally named as σ− (left-handed), π

(longitudinal), and σ+ (right-handed). In accordance with
(2.12) the diagram shows that the σ = −1 mode is superposed
in three terms having the particular field polarizations and
orbital angular momenta l = 0,−1,−2. The internal (spin)
angular momentum, given by rotation of the electric field
vector, and the orbital angular momentum contribute to the
total angular momentum equal to σ = −1 for all the three
terms. For an infinitely thin dielectric fiber the mode structure
is expected to approach the plane wave propagating in free
space, surviving only the main contribution σ−, l = 0.

The considered tripod-type atom has three Zeeman sub-
levels F0 = 1, M0 = 0,±1 in its ground state and one level
in its upper state F = 0, M = 0, as shown in Fig. 2. Here
we specify the atomic states by their total spin angular
momenta F0, F and their projections M0, M. Such a closed
energy structure exists in the hyperfine manifold of 87Rb. As
follows from (2.12) and, in the example of the σ = −1 mode,
visualized by the diagram in Fig. 1, each of the azimuthal
modes can actually excite any optical transition of the tripod-
type atom, but with essentially different oscillator strengths.
The σ = +1 and σ = −1 mode would most effectively drive
the atom, respectively, at σ+ and σ− transitions linked with the
dominating circularly polarized transverse waves, expressed
by the first terms in the first and second lines of (2.12). If the
atom is spin oriented along the waveguide and occupying the
M0 = +1 state then the σ = −1 mode can drive only the σ−
excitation channel as shown in the transition diagram of Fig. 2.

Nevertheless in the entire dynamics the incoincidence of
the azimuthal number with the transition type makes a dif-
ference for the light scattering from an atom placed near the
waveguide rather than in free space. As a consequence of
(2.12) the Rayleigh scattering in either forward or backward
directions, i.e., an event of the photon scattering within the
waveguide modes when the atom stays in the same initial
spin state, can happen by changing the azimuthal mode of the
scattered photon. Furthermore, the Raman scattering, when
the atom makes the transition to another spin state, can happen
by preserving the azimuthal mode of the scattered photon.
In the case of the spin-oriented atomic chain and for typical
parameters of the nanofiber structures such options have low
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FIG. 3. The geometry of signal light scattering from an array
of atoms, separated by distance d and confined with a nanofiber
waveguide of radius a. The signal light impinges the target system
in σ = −1 azumuthal mode and the control field is π polarized
and directed perpendicular to the fiber (see the transition scheme in
Fig. 2). The atoms, separated from the nanofiber surface by a distance
ρ − a, experience the interaction with both the evanescent field of the
HE11 mode and the control field.

probability but not negligible and can be taken into account
in the first-order correction in the numerical evaluation of the
resolvent operator (2.4).

Any quantum state of the signal light can be mapped onto
the atomic spin subsystem with the aid of a control field.
The Raman gates providing the state conversion are shown in
Fig. 2. The atomic array is prepared as spin oriented along
the z direction and can effectively interact with the signal
light propagating in the σ = −1 azimuthal mode via the σ−
transition. Once the control field is turned on the state of the
signal pulse can be converted onto the spin coherence in the
atomic subsystem. The control field can exist as the external
plane wave, negligibly overlapping with the waveguide area,
and is assumed as linearly polarized along the z axis and
directed perpendicularly to the fiber, as it is shown in Fig. 3
and Fig. 7 below. We generally accept two options when
the carrier frequency of the signal pulse is tuned either at
the Autler-Townes (AT) absorption resonance, created by
the control field, or alternatively at the electromagnetically
induced transparency point associated with this field.

The process can be introduced in the structure of the
polariton propagator (resolvent operator) by adding to its self-
energy part the following Feynman diagram:2

⇒ − h̄2|�R|2
4(E − E0 − h̄ωc + i0)

. (2.13)

Here the internal solid line is the vacuum atomic propagator
in the ground state, which is undisturbed by the presence
of the waveguide. The inward and outward dashed arrowed
lines are, respectively, the complex and complex conjugated

2The diagram representation of the generalized Dyson equation for
a collective propagator of the multiatomic system, where this graph
should be inserted, is given in [18,21].

amplitudes of the control field with frequency ωc and with the
Rabi frequency �R. The short incoming and outgoing arrows
indicate the link with other terms of the diagram expansion
for the dressed propagator of the polariton wave. Here E is
the energy argument in its Fourier representation and E0 is the
energy of the atomic ground state.

The key requirement justifying the validity of this assump-
tion is that the diagram (2.13) should not interfere with other
terms contributing to the self-energy part of the polariton
propagator (see [21]). Mathematically, the cooperative scat-
tering process from an atomic chain can be visualized by
the series of its perturbation theory expansion, which couple
different pairs of atoms via virtual photons transporting the
optical excitation through the chain. For each diagram the
time delay between any two points, coupled by the Green’s
function of the photon, has an order of L/c where L is the
chain length and c is speed of light. In order to ignore the
overlap between (2.13) with other diagrams, contributing to
the self-energy part, the control field amplitude should be suf-
ficiently small such that �RL/c � 1. For the Rabi frequencies
of the control field, typically comparable with a few γ , this
inequality is surely fulfilled.

D. Other approximations

The hardest point in evaluation of the resolvent operator in
the general case is in the exponentially expanding dimension
of the Hilbert subspace where the numerical simulations
should be processed, which (with keeping only single optical
excitation) is scaled as NdN−1, where N is a number of atoms
and d = 3 is the degeneracy of the ground state. We can get
around the problem if we keep only the representative domain
of the full Hilbert space and indeed there are physical argu-
ments that a certain truncation to a subspace of less dimension
can be done. Imagine that we have only one atom in the
chain repopulated from the main state F0 = 1, M0 = 1 to any
other Zeeman sublevel. Such an atom would experience only
extremely weak interaction with a signal pulse propagating in
the σ = −1 azimuthal waveguide mode and for the consid-
ered calculation parameters the respective transmission losses
can be numerically estimated by probability δT � 0.005. We
use this bound to show how the full Hilbert space can be
truncated to the representative subspace.

In the entire scattering process the atom can depopulate
the F0 = 1, M0 = 1 state as a result of either the spontaneous
Raman-type transition or via stimulated scattering into the
control mode. The former process contributes to the self-
energy part and to the resolvent operator (2.4) by a se-
quence of virtual excitation transfers in its Feynman diagram
expansion. For such virtual transitions and for an atomic
chain consisting of about hundred atoms we keep the atomic
repopulation to the states F0 = 1, M0 = 0,−1 only once.
This can be justified by the above estimate of the individ-
ual transition probability and lets us describe the scattering
process in the truncated Hilbert subspace with dimension
N + N (d − 1)C1

N−1 = N + N (N − 1)(d − 1). Furthermore for
the second process we are strongly constrained by our basic
concept that the interaction of the control field with the
atomic chain is allowed only within the coherent mechanism
described by the diagram (2.13). Other dressing diagrams
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associated with either independent (noncooperative) scatter-
ing or four-wave mixing of the control field interacting with
the repopulated atoms turn the problem beyond this concept
and should be ignored. The validity of this can be justified by
general weakness of the noncooperative interaction of the con-
trol mode with any atom randomly repopulated onto the F0 =
1, M0 = 0 state and would give only negligible correction to
the calculated parameters for the main scattering channel. The
diagram (2.13) keeps the main cooperative part of the coherent
interaction and leaves all the constructed matrix elements of
the resolvent operator within the truncated Hilbert subspace.

III. RESULTS

Below we present the results of our numerical simulations
for two complementary geometries. In the first round of our
simulations we follow the experimental design of [15] and
consider the scattering of the signal light incident on the
atomic array from one direction. In the second round we split
the signal pulse in a superposition of two counterpropagating
waves and calculate the system response in a symmetric
excitation geometry. For both the configurations we follow the
signatures of the cooperativity in the system response and in
enhancement of the Purcell effect.

A. Single entry geometry

Let us consider the scattering process in geometry shown in
Fig. 3. The signal light in the σ = −1 azimuthal component of
the HE11 mode impinges on an atomic array, confined with a
nanofiber dielectric waveguide, and splits by such a complex
system into the transmitted and reflected fragments. A part
of the light is lost because of the incoherent scattering into
the external modes. The atoms are spin oriented along the
waveguide such that the interaction with the control field is
triggered once the signal pulse is arrived (see the diagram of
Fig. 2).

The scattering process is described by coefficients of trans-
mission T , reflection R, and losses L , which are defined as

T = T (ω) =
∑

i′,k′>0

|Si′i|2,

R = R(ω) =
∑

i′,k′<0

|Si′i|2,

L = L (ω) = 1 − R(ω) − T (ω), (3.1)

and considered as a function of the signal mode frequency
ω ≡ ωs. Here i = {σ = −1, k; M0 = +1(all atoms)} and the

final state can be any of i′ = {σ ′, k′; {M (a)′
0 }N

a=1} where each of
the N atoms can be redistributed onto an arbitrary Zeeman
sublevel with M (a)′

0 = 0,±1. However, as explained in the
preceding section, for leading correction to the main scattering
channels it is sufficient to keep only one event of the sponta-
neous Raman transition so we imply M (a)′

0 �= 1 for only one
atom in the chain.

In Fig. 4 we show the spectra of transmission and re-
flection for an array consisting of 10 atoms separated from
the fiber surface by a distance ρ − a = 0.5a, where a is the
fiber radius. In our calculations we have focused on two
physically different examples of either ordered or disordered

FIG. 4. Spectra of transmission T = T (ω), reflection R =
R(ω), and losses L = L (ω) for light scattered from an atomic
chain consisting of 10 atoms without (upper plot) and in the presence
(lower plot) of the control field. The spectra are plotted as a function
of detuning of the signal mode from the atomic resonance � =
ω − ω0 (see Fig. 2), and presented for the ordered (magenta) and
disordered (gray) atomic configurations with interatomic separation
d ∼ λwg/2 (see Fig. 3). The solid curves correspond to the transmis-
sion and reflection and the dashed curves indicate the losses. The
control mode ωc, having the Rabi frequency �R = 2γ and detuned
from the atomic resonance by �c = ωc − ω0 = −4γ , creates an
artificial Autler-Townes resonance structure, which shows behavior
similar to the scattering spectra near the fundamental matter-state
atomic resonance.

configurations of atoms separated by a distance d ∼ λwg/2,
where λwg is the signal mode wavelength in the waveguide.
In the case of the disordered atomic chain we have simulated
a particular configuration of randomly distributed atoms. The
upper plot corresponds to the scattering of the signal mode,
not assisted by the control field, scanned near the point of
atomic resonance ω0. For the ordered configuration, when
d = λwg/2 precisely, there is a clear signature of coopera-
tive enhancement of the scattering process in the backward
direction, and the spectra of transmission, reflection, and
losses have a single resonance structure. On the contrary,
for the disordered distribution the reflection is negligible and
the spectra of transmission and losses have a complicated
profile, which depends on the atomic configuration. However,
because the number of atoms is relatively small the effect of
cooperativity in the entire energy balance is weak and in either
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FIG. 5. Same as in Fig. 4 but for an atomic chain consisting of
100 atoms.

case the light mostly emerges from the system via incoherent
scattering channel.

The lower plot of Fig. 4 corresponds to the scattering on an
artificial resonance structure created by the control field. The
calculations are presented for the control mode of frequency
ωc having the Rabi frequency �R = 2γ and tuned at the
point �c = ωc − ω0 = −4γ . For the sake of convenience
the spectra are scaled to higher resolution and then demon-
strate similar behavior as for the scattering near the original
undisturbed atomic resonance shown in the upper plot. This
reflects physical equivalence in manifestation of the collective
effects for the scattering process from the fundamental (matter
state) and artificial (driven by a control field) AT-resonance
structures.

In Fig. 5 we show how the cooperative scattering in the
backward direction is modified for an atomic chain consisting
of 100 atoms. For a disordered configuration the backscat-
tering and light trapping are negligible such that most of
the signal light emerges from the system via the incoherent
scattering channel and is lost. But the ordered configuration
demonstrates quite strong cooperative enhancement with re-
duced losses, which near the resonance are even weaker than
for a smaller target consisting of ten atoms (see Fig. 4).
Such a nontrivial spectral behavior and light trapping within
the waveguide is a not so contra-intuitive result and can
be naturally linked with phenomena of photonic crystal and
Bragg diffraction in one-dimensional and periodically struc-
tured atomic lattices. The strong coherent backscattering from

FIG. 6. Time delay of the signal pulse, coherently scattered by
the system of 10 atoms (left) and 100 atoms (right). The input
pulse (magenta curves) is taken as time reversed replica of the AT
resonance decay profile, shown in Figs. 4 and 5. The inset shows
the associated memory scheme. The outgoing pulse, including its
transmitted and reflected parts, is indicated by the dashed bounding
curve. The delayed and stored fragments, responding after the back-
front of the input pulse gets in the sample, are equally emitted in both
the forward and backward directions. In these examples the storage
efficiency is about 8% (10 atoms) and 38% (100 atoms).

ordered atomic arrays has been recently observed in experi-
ments [15,16]. The presented numerical simulations show that
similar strong cooperative enhancement of the backscattering
could be also observed from the artificial AT-resonance struc-
ture created by the control field.

The strong frequency dispersion of the signal mode can
lead to delay of a signal pulse and to light storage phenomena.
In Fig. 6 we show the memory effect for a signal pulse
prepared as a time reversed replica of the AT resonance decay
profile. The chosen optimally shaped signal pulse should give
us a critical benchmark of the maximal memory efficiency and
show the entire potential for the quantum interface protocols
based on a nanofiber architecture.3 In this figure we compare
the delay effect of the pulse scattered from the ordered atomic
configurations consisting of 10 and 100 atoms. For a larger
number of atoms the cooperative interaction with the atomic
chain is stronger, which makes the AT resonance broader, so
the optimal signal pulse is taken shorter in time.

There are the following important properties of the process
to point out. First, by enlarging the number of active atoms the
atomic chain tends to work as a light reflector. As confirmed
by our numerical simulations, in the case of 100 atoms the
part of the outgoing pulse, which overlaps the input pulse

3Strictly speaking we demonstrate here the light delay effect. But
by turning off the control field at arrival time of the signal pulse
and by turning it on again after delay, limited by a spin decoherence
time, we would reproduce the same dynamics for the retrieved pulse
excepting short and fast oscillations associated with the transient
processes.
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FIG. 7. The geometry of symmetric light scattering from an array
of atoms confined with a nanofiber waveguide. Unlike Fig. 3 here
the signal light is superposed in two waveguide modes, running in
opposite directions.

and leaked from the memory protocol, is mainly scattered in
the backward direction, such that for this part of the signal
pulse the atomic sample indeed works as a light reflector.
However, that is not so for the delayed part of the light pulse,
which is supposed to be stored in atomic memory. For either
configurations consisting of any number of atoms the delayed
and stored part of the signal pulse is equally emitted in both
directions. Secondly for the considered memory protocol the
efficiency can never be perfect and in our examples it is about
8% for 10 atoms and 38% for 100 atoms. For the infinite
number of atoms it would approach 50% only. Below we
clarify this point.

The specific interaction channels differently contribute to
the construction of the outgoing pulse. The coherent Raman
coupling with the control field, expressed by diagram (2.13),
provides the main cooperative response of the atomic polar-
ization on the signal field. Nevertheless in the leaked part of
the pulse there is also presence of the spontaneous Raman
scattering out of the main channel within a few percents of
the magnitude for both the considered atomic configurations.
But the delayed and stored part of the pulse is constructed
only by the cooperatively enhanced Raman emission from the
repopulated (signal) atoms on the σ− optical transition (see
Fig. 2).

B. The symmetric geometry

Let us change the scattering geometry to the configura-
tion when two waveguide modes, running in the opposite
direction, symmetrically contribute to the scattering process
(see Fig. 7). The signal pulse can be split and superposed
in two counterpropagating fragments with the aid of a ring-
type interferometer based on the Sagnag design. For such
a symmetric interface architecture there are two equal input
channels so the target sample operates as a two-port lossy
beamsplitter for the incident light, and the scheme generalizes
the conventional geometry of one-dimensional scattering, dis-
cussed in the preceding section.

The symmetric scattering process can be described by two
transmission probabilities, constructed as a squared amplitude

of the signal mode passed through each output channel,

T→ = T→(ω) =
∑

i′,k′>0

1

2
|Si′i + eiϑSi′−i|2,

T← = T←(ω) =
∑

i′,k′<0

1

2
|Si′i + eiϑSi′−i|2,

L = L (ω) = 1 − T→(ω) − T←(ω), (3.2)

where we have simply denoted “−i” the state, which is
obtained from the “i” state by substituting k → −k. The phase
ϑ expresses the arbitrary relative phase existing between two
counterpropagating incoming fragments of the signal pulse. It
is a straightforward option of the ring interferometer to further
compile both the outgoing fragments with k′ > 0 and k′ < 0
in one pulse.

The specifics of scanning the atomic sample in symmetric
geometry is clearly seen for a periodically ordered atomic con-
figuration. In this case the driving σ−-polarized component of
the incident wave is given by superposition of two counter-
propagating running waves (see Fig. 1) with equal amplitudes
and creates a standing wave. By varying the phase ϑ the atoms
could occupy either the nodes or crests of such a standing
wave. In the former case the system would be completely
transparent with T→ = T← = 1/2 such that the presence of
atoms would be invisible for the signal light. But in the latter
case, with placing atoms in the crests, the interaction would
be maximally enforced, and below we present our numerical
simulations just for such an advanced design.

In Fig. 8 we show the spectra of total transmission T (ω) ≡
T→(ω) + T←(ω) and losses L (ω) for the scattering from
the symmetrically irradiated atomic sample, consisting of
10 atoms. The main features of the process are the same as
they are for the conventional scattering process, for which
spectra are shown in Fig. 4. As before the spectral profiles
of the undisturbed fundamental atomic resonance (upper plot)
and of the artificial AT resonance (lower plot) demonstrate
certain similarity of their spectral shapes. For disordered con-
figuration the atoms scatter the light mostly via the incoherent
channel, so that in Fig. 8 we obtain the balance between
transmission and losses approximately at the same level as
in Fig. 4. It cannot be point-by-point coincidence between the
graphs since the conventional scattering process, when light
is arriving from different directions, is not symmetric in the
disordered case. On the contrary, the ordered configuration
reveals an important difference between the respective de-
pendencies in Fig. 8 and Fig. 4, so for symmetric scanning
the losses are evidently higher and transmission is weaker.
That seems an expected consequence of the above pointed
enforcing of the interaction between the light and atoms for
this case.

In Fig. 9 we show how the spectra of transmission and
losses are modified for an atomic sample consisting of
100 atoms. For disordered configuration we obtain much
stronger scattering and losses via the incoherent channel.
But the ordered atomic chain demonstrates different behavior
showing that the atomic sample becomes more transparent
than for the chain consisting of fewer atoms. From the first
sight this surprising result may seem as contra-intuitive and
contradicting the above arguments. But it is clarified once we
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FIG. 8. Spectra of transmission T = T (ω) ≡ T→(ω) +
T←(ω) and losses L = L (ω) of light scattered from a
symmetrically irradiated atomic chain consisting of 10 atoms,
which were calculated without (upper plot) and in the presence
(lower plot) of the control field. Other parameters and curve
specifications are the same as in Fig. 4.

pay attention to the fact that with an enlarging number of
atoms the scattering process turns to the cooperative dynamics
with enhancement of the Purcell effect such that most of the
light is re-emitted back to the guided mode as a result of
either Rayleigh (upper plot in Fig. 9) or Raman (lower plot
in Fig. 9) cooperative scattering processes. If we compare
the dependencies of Fig. 9 with the similar dependencies of
Fig. 5 we can conclude that for the symmetrically organized
scattering process the atomic chain, consisting of a sufficiently
large number of atoms, should asymptotically approach the
properties of a lossless beam splitter capable only of redirect-
ing the light beams within the one-dimensional channel.

As a consequence, the symmetric geometry should lead
to a more effective memory effect since for a periodically
structured atomic chain the pulse retrieval, provided by the
cooperative Raman emission, would be an intrinsically sym-
metric process. In Fig. 10 we show how the split signal pulse
impinging the atomic sample from the opposite sides could be
delayed and stored in the spin subsystem. For the considered
examples the efficiency of the memory is about 16% for
10 atoms and 76% for 100 atoms so it is exactly twice more
than for the conventional scattering design when the pulse
arrives from only one side (see Fig. 6). The inset in Fig. 10
suggests the possible scheme of a ring-type interferometer
adjusted for the observation of the process. It needs to place a

FIG. 9. Same as in Fig. 8 but for 100 atoms.

half-wave plate in the right-hand interferometer arm to change
helicity of the wave before its conversion into the waveguide
mode. Although in such a memory scheme there is an option
that the retrieved pulse would emerge from the system from

FIG. 10. Same as in Fig. 6 but for the symmetric scattering.
The inset shows a possible observation scheme based on a ring-
type interferometer with a half-wave plate placed in its right-hand
arm. The signal pulse, retrieved from the memory unit M, emerges
from both the beam-splitter ports out(L) and out(R) and is further
detected. In these examples the storage efficiency is within 16%
(10 atoms) and 76% (100 atoms).
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both the interferometer ports, our calculations confirm that the
retrieved photon emerges from the same port as it has arrived.

With an enlarging number of atoms up to infinity the
efficiency would approach 100%. Now we can see that for
the conventional geometry the maximal efficiency is limited
by 50% just because the incoming pulse can be optimized
as a time reversed replica for the cooperatively emitted light
only in one direction, i.e., for only half the energy of the
potentially stored light. As a clear visualization of the time
reversal symmetry for a sample with a large number of atoms
the incoming and stored pulses, considered together, construct
the symmetric time profile (see the right image in Fig. 10).

Here we have demonstrated the memory effect by consid-
ering direct Raman conversion of the signal pulse onto the
spin excitation. But as commented on in [31], for the simplest
�-configured atoms the memory protocol, developed near
the point of electromagnetically induced transparency, should
have the same efficiency. In the next section we show that in
the limit of strong cooperativity for a one-dimensional system
of the tripod atoms there is indeed similarity in description of
either absorption (AT) or transparency (EIT) resonances, so
both the light storage protocols can be equally applicable.

C. The two-channel model

Imagine that the Purcell enhancement of the radiation
emission is as strong as the atoms mostly communicate via
the guided mode. In such a highly effective interface config-
uration the above results can be approximated by a simpli-
fied model with keeping only the main scattering channels.
According to the basic statements of the quantum scattering
theory (see [32]), the two-channel process can be described
by the scattering matrix given by the product,

S =
(

cos α − sin α

sin α cos α

)(
e2iδ1 0

0 e2iδ2

)(
cos α sin α

− sin α cos α

)
,

(3.3)

which makes general factorization of a symmetric unitary
matrix in two-dimensional subspace. The incoming and out-
going channels 1 and 2 should be associated here with two
counterpropagating waves either incident on or scattered from
the atomic target.

As follows from the symmetry of the considered system
there are two combinations of the waves incident from op-
posite directions, which would independently interact with
the target sample. These are either symmetric or antisymmet-
ric superpositions of the counterpropagating incident waves.
With respect to the frame, centered within the sample, these
two wave configurations are shifted by the λwg/4 scale
so the atoms are distributed either in the crests or in the
nodes of the interfering waves. In the latter case there is no
interaction between light and atoms such that the ordered
atomic array becomes completely transparent. But in the
former case the system has an ability for strong cooperative
emission into the outgoing modes. Thus the S matrix (3.2)
could be parametrized by α = π/4 and δ2 = 0 (no scattering).
Near an isolated point of the resonance scattering the exponent

with the phase shift δ1 can be expressed as

e2iδ1 = ±δω − i
2�C

δω + i
2�C

, (3.4)

where we have denoted δω = ω − ω∗ and ω∗ is the point of
resonance, which can be associated with either absorption AT
resonance or transparency EIT resonance. The positive and
negative signs are, respectively, related to the tuning at the
points of these resonances and for the sake of simplicity we
have parametrized both the resonances by the same cooper-
ative width �C . In our previous discussion �C was given by
an effective rate of the cooperative Raman emission into the
outgoing channel.

For the positive sign and for tuning the signal mode near
the point of absorbtion resonance δω ∼ 0 the system transfers
to a perfect phase inverting reflector, i.e., matrix (3.2) becomes
cross-diagonal with off-diagonal matrix elements equal to −1.
In the opposite case, with keeping negative sign in (3.2),
near the point δω ∼ 0 the system becomes transparent such
that the S matrix transforms to the identity matrix. As we
can see, for explanation of the light storage effect there is
no difference between these two types of resonances if both
are parametrized by the same line width �C . And it is quite
intriguing that such an ideal scenario is reproducible by our
precise numerical simulations.

The representation of the S matrix in the form of isolated
resonances (3.3) and (3.4) is mainly valid as the resonance can
be reliably approximated by a Lorentzian shape profile. In the
presented calculations both the polariton modes, associated
with the pole structure of the resolvent operator either at the
point of atomic resonance or near the detuning of the control
field, are fairly resolved and such an approximation seems
faithful. The scaling of the effective resonance bandwidth is
given by �C ∼ γ wgN where γ wg is a dimensional constant,
which could be formally interpreted as the emission rate
into the waveguide per atom and confirm our expectations
preceded in the introduction. Nevertheless we can point out
intrinsically the quantum nature of the process when the
polariton modes are expressed by an entangled nonseparable
Dicke-type microscopic quantum state. The polariton dynam-
ics cannot be visualized as a subsequent excitation transfer
along the atomic chain. The periodically ordered atoms exist
in equivalent physical conditions such that they simultane-
ously interact with each other within any pair with the same
coupling strength.

That would not be the case for a disordered atomic chain
where incoherent losses would dominate in the scattering pro-
cess. Any signatures of the localization phenomenon, possibly
associated with the disorder induced light trapping inside the
atomic chain, are strongly suppressed because of the losses.
The light propagates through a disordered one-dimensional
atomic chain similarly to light transport through a dilute
atomic gas and the process implies the standard self-consistent
description in terms of macroscopic Maxwell approach. The
basic features of the Raman process, including the EIT effect,
can be correctly introduced in terms of nonlinear susceptibil-
ity of the atomic sample, Beer-Lambert-Bouguer law, slow
light, etc.
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FIG. 11. Transition diagram showing how two control fields C1

and C2 having different polarizations can be used for storage of two
signal photons in a multiatomic chain.

Since in the typical experimental conditions a number of
atoms, contributing to the process, can be sufficiently large
the nanofiber systems show good potential to be extended
towards various other more sophisticated interface schemes.
As an example in Fig. 11 it is shown how two photons could
be subsequently stored in an atomic array with make use of
two control fields of different polarizations. The σ+ polarized
control mode is assumed as a plane wave directed at small
angle to the waveguide (z axis). The retrieval of the photons
can be done either independently or simultaneously if we
would aim for preparation of a two-photon state on demand.
Furthermore it seems quite straightforward that with manipu-
lation by mode polarizations and with involving the different
segments of the entire atomic array, normally consisting of
thousands of atoms, one can adjust the proposed design for
the quantum information processing of many qubits.

IV. CONCLUSION

In this paper we have examined the scheme of the quantum
interface based on coherent interaction of a single-photon
pulse with a one-dimensional atomic system. The key point
of our analysis was in realistic modeling of the interaction
process not restricted by simplifying approximations of two-
level atoms, hopping transfer of an optical excitation, empir-
ical description of the scattering sequence from the atomic
chain, etc. As a clarifying example, attainable for the existing
experimental capabilities, we have considered an array of the
tripod-type atoms confined with a nanoscale waveguide and
interacting with the signal light propagating in its fundamental
HE11 mode.

It has been obtained that cooperative phenomena strongly
affect the interaction process. The array of atoms periodically
ordered along the waveguide and separated by a distance of
a half wavelength has the ability for cooperative enhance-
ment of the radiation emission into the guided mode. For
a sufficiently but not extremely large number of trapped
atoms (taken about hundred in our numerical simulations)
the system tends to be adjusted as an effective beam splitter
redirecting the light within the waveguide. In a conventional
scattering configuration the signal light is mostly reflected at
the resonance point with strong dispersion for the polariton
mode created in the entire system. This effect can be observed
not only near the fundamental matter state atomic resonance
but also at the artificial Autler-Townes resonance, structured
and manipulated by the control field.

From the point of view of the quantum interface we have
verified that it would be optimal that the signal light was
symmetrically incident from both sides of the atomic sample.
Owing to periodic symmetry in the atomic distribution the
counterpropagating polariton modes would equally respond
to the optical excitation of the sample in this case. Our sup-
porting numerical simulations have confirmed the strong scat-
tering, strong dispersion, and existence of the memory effect.
For the most effective quantum state interchange between the
light and atoms the temporal profile of the signal pulse should
be shaped as a time reversed copy of the decay profile for the
Autler-Townes resonance. The considered one-dimensional
scheme of quantum memory is attainable for experimental
verification and has a certain potential towards design of a
scalable multiqubit quantum interface, quantum registers, and
logic operations.
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APPENDIX: THE GREEN’S FUNCTION D(ext)

As shown in [21] the contribution to the Green’s function
D(ext), physically associated with the radiation emitted by a
pointlike dipole source into external modes, can be approx-
imated by the following correction to the vacuum Green’s
function,

D(ext)
μν (r, r′; ω)

≈ D̃(0)
μν (r, r′; ω) ≡ D(0)

μν (r − r′; ω)

−
∑

s

E (s)
μ (r)

∫
d3r′′ D(s)∗

α (r′′)D(0)
αν (r′′ − r′; ω). (A1)

Here D(0)
μν (r, r′; ω) is the fundamental solution of the wave

equation in free space, and E (s)
μ (r), D(s)

α (r′′) are the vector
components, respectively, for the electric and displacement
fields of the HE11 mode. This approximation is as better valid
as the dipole source is farther separated from the fiber surface.
We will further assume that the dipole has a position within a
tail of the evanescent field where the fundamental waveguide
mode can be faithfully approximated by a paraxial Gaussian
mode propagating in free space.

The electric field Green’s function in free space is defined
as a solution of the microscopic Maxwell equation,

�D(0)
μν (r, r′; ω) − ∂2

∂xμ∂xα

D(0)
αν (r, r′; ω) + 4π

ω2

c2
D(0)

μν (r, r′; ω)

= 4π h̄
ω2

c2
δμνδ(r − r′), (A2)
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which can be constructed with the Fourier transform,

D(0)
μν (R; ω) =

∫
d3κ

(2π )3
eiκ·R

× 4π h̄ω2

ω2 − ω2
κ + i0

[
δμν − c2 κμκν

ω2

]
, (A3)

where R = r − r′. The internal wave vector argument can
be decomposed as κ = (κ⊥ = q, κz = k) and for the mode
frequency one has ω2

κ = c2k2 + c2q2.
In (A1) the displacement field D(s)(r) is considered in the

Cartesian basis,

D(s)(r) = D(s)
α (r) eα = D(s)

α (ρ, φ)
1√
L

eikz eα, (A4)

with α = x, y, z and the integral in the second line of (A1) can
be transformed as∫

d3r′′ D(s)∗
α (r′′)D(0)

αν (r′′ − r′; ω)

= 1√
L

e−ikz′
∫

d2ρ ′′ D(s)∗
α (ρ ′′, φ′′)

∫
d2q

(2π )2
eiq·(ρ′′−ρ′ )

× 4π h̄ω2

ω2 − c2k2 − c2q2 + i0

[
δαν − c2 κακν

ω2

]

= 1√
L

e−ikz′
∫

d2q

(2π )2
e−iq·ρ ′

D(s)∗
α (q)

× 4π h̄ω2

ω2 − c2k2 − c2q2 + i0

[
δαν − c2 κακν

ω2

]
, (A5)

where we have used cylindrical coordinates, with r = (ρ, z) =
(ρ, φ, z) and d2ρ = ρdρdφ, and defined the Fourier com-
ponents of the displacement field in respect to its transverse
spatial coordinates,

D(s)
α (q) =

∫
d2ρ e−iq·ρ D(s)

α (ρ, φ), (A6)

which contributes in (A5) in its complex conjugated form.
The basic expansion for the HE11 mode (2.12), presented

for the vector of displacement field, can be written as4

D(s)(ρ) = D⊥(ρ) es + D(s)
2φ (ρ, φ) + D(s)

z (ρ, φ),

D(s)(q) = D⊥(q) es + D(s)
2φ (q) + D(s)

z (q). (A7)

For a subwavelength waveguide the first term dominates and
implies description of paraxial optics so es is the unit complex
polarization vector of the mode in its paraxial limit. By this
we mean that the mode can be faithfully approximated by
the paraxial solution of the wave equation in free space. We
will mainly track in the mode index s = σ, k its azimuthal
number σ = ±1, which in this limit corresponds to either

4For the sake of convenience we have multiplied the complex
components (2.12) (main text) by an extra phase factor “−i”. These
auxiliary factors compensate each other and can be canceled out in
the final expressions (A13)–(A15).

right-handed or left-handed circular polarizations. In accor-
dance with (2.10)–(2.12) the first term in (A7) is given by

D⊥(ρ) = ε(ρ)
−iEρ (ρ) − Eφ (ρ)

2
√

π
,

D⊥(q) = 2π

∫ ∞

0
ρdρ J0(qρ) D⊥(ρ), (A8)

where ε(ρ) is dielectric permittivity of the entire medium
(dielectric fiber and free space).

The second term in (A7) is a specific waveguide contribu-
tion, which depends on azimuthal angle φ and vanishes in the
paraxial limit. It is given by

D(s)
2φ (ρ, φ)|σ=±1 = es̄D

′(ρ)e±2iφ

D′(ρ) = ε(ρ)
−iEρ (ρ) + Eφ (ρ)

2
√

π

D(s)
2φ (q)|σ=±1 = es̄ 2π (±i)2

∫ ∞

0
ρdρ J±2(qρ) D′(ρ)

≡ −es̄D
′(q), (A9)

where es̄ is the unit transverse complex vector orthogonal to
es (e∗

s · es̄ = 0) and the z axis.
The last term in (A7) defines the field longitudinal compo-

nent, also vanishing in the paraxial limit, and it is given by

D(s)
z (ρ, φ)|σ=±1 = ez (−i)D′′(ρ)e±iφ,

D′′(ρ) = ε(ρ)
Ez(ρ)√

2π
,

D(s)
z (q)|σ=±1 = ez 2π (±i)

∫ ∞

0
ρdρ J±1(qρ) (−i)D′′(ρ)

≡ ezD
′′(q), (A10)

where ez is the unit vector along the z axis. The last lines of
Eqs. (A9) and (A10) are constituted by the property of the
Bessel functions: J−m(x) = (−)mJm(x). All the functions D⊥,
D′, and D′′ are set as real functions.

The integral (A5), as being substituted to (A1), has to be
evaluated for near resonance waveguide modes, i.e., for those
longitudinal wave numbers k, which fulfill the condition: ωs ∼
ω ∼ ω0. It is a consequence that physically just these waveg-
uide modes are mainly responding to radiation resonantly
scattered by the atoms. Since the phase and group velocities
of the waveguide mode are always less than the speed of
light in vacuum we get ω2 − c2k2 ∼ ω2

s − c2k2 < 0 and in
these conditions the denominator in (A5) is off-resonant and
always negative for any q2 such that the integral is uniformly
convergent inside the spectral domain where function D(s)∗(q)
is meaningful. Furthermore the denominator in the integrand
additionally filters the transverse modes contributing to in-
tegral (A5) at the scale q2 ∼ (c2k2 − ω2)/c2. The filtering
function selects a spectral area near the frame origin in the
reciprocal space, i.e., at |q| = q → 0. Under our assumptions
the scaling of q is within deviation of ω ∼ ωs ∼ ω0 from c k ≡
ωfree

k . Typically the difference ωfree
k − ωs � ωs is sufficiently

small but at the same time much larger than the width of
atomic resonance ωfree

k − ωs � γ .
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The terms D(s)∗
2φ (q) and D(s)∗

z (q) approach zero at the origin
point [see Eqs. (A9) and (A10)] so their contribution to the
convolution-type integral (A5) is suppressed by the filtering
function, and the above estimates let us neglect them. Physi-
cally that means that the convolution of the waveguide mode
with the vacuum Green’s function selects those contributions
to the mode which can be approximated by the transverse
Gaussian waves propagating in free space. By leaving in the
integrand of (A5) only the contribution surviving the limit
q → 0 (i.e., omitting contributions of D(s)∗

2φ (q) and D(s)∗
z (q)

as well as the second term in the square brackets of (A5)], we
arrive at the following estimate of our basic integral:

∫
d3r′′ D(s)∗

α (r′′)D(0)
αν (r′′ − r′; ω)

≈ 1√
L

(e∗
s )νe−ikz′

∫ ∞

0

qdq

2π
J0(qρ ′) D⊥(q)

× 4π h̄ω2

ω2 − c2k2 − c2q2 + i0
. (A11)

We have justified this approximation for the wave numbers k
obeying the condition ωs ∼ ω ∼ ω0 where we have relevant
balance between the spectral parameters. Nevertheless we
formally extend it over all the k’s and evaluate the integral
(A1) formally in infinite limits. The result is correct inside
the frequency domain where the respective waveguide modes
ωs ∼ ω mainly exist in evanescent field outside the fiber and
can be reproducible by paraxial Gaussian modes propagating
in free space. It is incorrect for high frequencies, where
the modes are concentrated inside the fiber with minimal
contribution of the evanescent field. But in such a situation
the approximation (A1) would be insufficient for itself.

After substitution of (A11) into (A1) the Green’s function
D(ext) is given by

D(ext)
μν (r, r′; ω) ≈ D(0)

μν (r − r′; ω)

+ E (s)
μ (ρ, φ) (e∗

s )ν

∫ ∞

0

qdq

2π
J0(qρ ′) D⊥(q)

× 2π i h̄ω2

c
√

ω2 − c2q2
exp[i

√
ω2/c2 − q2 |z − z′|]. (A12)

Here we have evaluated the integral over the longitudinal wave
number in the assumption that the transverse profile of the
field is approximately independent on k in the representative
area of integration including the poles k ∼ ±ω/c. In (A12)
and below in (A13) and (A15) index “s” enumerates only
azimuthal number σ of the mode together with specification
of its propagation direction (forward for z > z′ and backward
for z < z′) and assumes the sum over the repeated index in
the product. The remaining integral cannot be evaluated in a
closed form, but it can be conveniently approximated by its
near and far distant asymptotes.

For short separations |z − z′| � ω/cq2, where 1/q2 is the
inverse variance of the transverse wave number, one could

ignore q2 in the second line of the integrand and get

D(ext)
μν (r, r′; ω)||z−z′ |<2ω/cq2 ∼ D(0)

μν (r − r′; ω)

+ E (s)
μ (ρ, φ)(e∗

s )νD∗
⊥(ρ ′)

2π i h̄ω

c
exp

[
i
ω

c
|z − z′|

]
,

(A13)

where we have returned the original phase convention for the
mode definition in accordance with (2.12) and made use of
completeness of the Bessel functions.5 In the area outside the
fiber, where the electric and displacement field coincide, this
result can be rewritten in equivalent form,

D(ext)
μν (r, r′; ω)||z−z′ |<2ω/cq2 ≈ D(0)

μν (r−r′; ω)

−
∑

s

4π h̄ω2

ω2 − c2k2 + i0
E (s)

μ (r) E (s)∗
⊥ν (r′), (A14)

where in the subtracting term E(s)
⊥ (r′) denotes the leading (in

paraxial limit) contributions in the right-hand side of (A7)
when the terms dependent on the azimuthal angle are omitted.

The physical consistence of the obtained result was com-
mented on in Appendix of [21]. The inverse variance of the
transverse wave number 1/q2 ∼ w2 gives us an estimate for
the beam waist w and ω/c = 2π/λ0 defines the vacuum wave-
length λ0 which differs from the waveguide wavelength λwg,
but in accordance with our basic assumptions λ0 − λwg �
λwg. In diffraction theory the length scale πw2/λ0 = zR is
known as the Rayleigh range. Thus the derived approximation
for the Green’s function D(ext) (A14) is applicable for the
radiation coupling between the atoms separated by a distance
within double Rayleigh range associated with a paraxial Gaus-
sian fit of the HE11 mode.

In alternative limit |z − z′| � ω/cq2 the oscillating ex-
ponent would reduce the integral in (A12) down to zero
value. For separations ρ ′ � c/ω � ω/cq2 in the rest it has
the following asymptote:

D(ext)
μν (r, r′; ω)||z−z′ |�ω/cq2 ∼ D(0)

μν (r − r′; ω)

+ E (s)
μ (ρ, φ)(e∗

s )ν

∫ ∞

0
2πρ ′′dρ ′′ D∗

⊥(ρ ′′)

× h̄ω2

c2|z − z′| exp
[
i
ω

c
|z − z′|

]
, (A15)

where the second term subtracts the dipole emission into a
small solid angle overlapping the area of the waveguide mode.

5After substituting (A8) into (A12),

∫ ∞

0
qdq J0(qρ ′) J0(qρ ) = 1

ρ
δ(ρ ′ − ρ ).

See Ref. [33].
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